DT sl
BIRZEIT UNIVERSITY

Machine learning approach to test the

normality of the data

Prepared by:
Hussein M. Soboh

1185061
Committee:
Dr. Hassan Abu Hassan Advisor
Dr. Tareq Sadeq Member
Dr. Radi Jarrar Member

Submitted in partial fulfillment of the requirements of the “Master
Degree in Applied Statistic and Data Science” from the faculty of

Graduate Studies at Birzeit University - Palestine

BIRZEIT UNIVERSITY

Machine learning approach to test the
normality of the data

Prepared by:
Hussein Soboh
1185061

Committee:

Advisor

Dr. Tareq Sadeq Member

Dr. Radi Jarrar % W Member

Dr. Hassan Abu Hassan

Submitted in partial fulfillment of the requirements of the
“Master Degree in Applied Statistic and Data Science” from the
Jaculty of Graduate Studies at Birzeit University - Palestine

To my family

Table of Content

TADIE OF CONENT ...ttt e et bbbt b e s e e see e I
LISE OF TADIES ..ottt e bbbt Il
S 0 T U =TSSR v
N o1 L = Tod OSSPSR \
UARLA, Lttt ettt e be et e eheeae et et e teateebeeheeheeheerteateteteebeabeebeebeeneententeeteateeteateeaearaas VI
CRAPLET ONE ...ttt b bbbt h bbb bbbt 1
T (T L8 o4 AT o PSSR RPSSRSN 1
IO R = 7 o 1 |01 3T PSP TS 2
1.2 Problem definition. ... s 4
1.3 RESEAICN ODJECHIVESeciiieicitecie ettt ettt e e e ste e e sreereenee e 5
1.4 Limitations OF the STUAY........ccoeeiiiie it 5
(OF g FoT o] (=] g AT T USSP PP O TP PR 7
LITEIALUIE TEVIBWiveeieeee ettt ettt ettt et et e st e se e et e e e s e s ae e teeneeebeeaeeneenneeteaneenreenneas 7
2.1 NOFMEAIIEY TESTS ..ttt bbbttt e bbb 7
0 N V1 W= LI (=T PSSR 7
2.1.2 SHALISTICAI TESTS. ... i iueeieeieiieiie ettt et e e e s e sre e e ereenreeneeas 7

2.2 PrevioUS COMPAIISONS. .. .cuiiieiieeieiteeiteesteetesteeste e testeesteesaesseesseessesseeaseeseesseesteesnesreesseensens 9
2.3 Limitations of the StatiStiCal tEeStS.........ccccviiiiiiiiiieee s 11
(08 T T] I 0 £ TSP 12
Ve aToTo (o] (o]0 V2SSOSR SRPTORPRON 12
3.1 Alternative DiStrIDULIONScviiieiieecie e 12
311 Beta DiStrIDULIONociiiiece e 13
3.1.2 Student t-diStrIDULIONocveeieeeiecccee e 14
3.1.3 Chi-squared DiStriDULION.ccoiiiiiiieieie e 15
3.1.4 Log-normal DiStribDULIONccceiiiiiiiii e 16
3.1.5 Weibull DIStriDULION:oovviiieieceee e e 17
3.1.6 TUKeY DIStHDULION ...c.viiiiiiciic st 18
3.1.7 Laplace DistribDULION........c.cooiiiiicic e 19
3.1.8 Uniform (Rectangular) DiStriDULIONcoooiiiiiiiiieieeeee e 20

3.1.9 Truncated Normal DiStriDULION..........oooeeeeee 21

K07 \V/ [T (=] o] 0111 £ U od 1 o] OSSPSR 22
32,1 PIOCESS ..ttt bbb nae e be e e be e e 22
3.2.2 Classification TECANIQUESc.ecveiieiieeiecie e 23
3.2.3 DA SBL......ieeiii e 30
T N - U] 0o OSSR 31
325 EVAIUALION ..o bbb 31

3.3 POWET COMPAITSON TEST ...ttt 32

2 0] | oo) RSP RTRRR 32

CRAPLET FOUT ...t e b bbbt bt sttt e bbbt nbe et 34
SIMUIALION ANA RESUILS ...ttt sreenne e eneenns 34

4.1 CIlasSification MOUEL..........ccoiiiiiiiiicee e 34
I R B T 1 7 W0 =1 g 1=1 =[] o SRS 34
A (o] (o] g To o - - WSS 35
4.1.3 Splitting data (train, validate, test, UNSEEN)c.cceiieieeiieiicie e 44
O S I =] 1[40 FO PSP PO PO PP P PP OR 45
T V- [V 1 (oo OSSPSR 48

4.2 POWEE COMPAIISON ...ttt sttt etttk sb bbbt e e e bbb b 56
O R o (0o T L1 - SR 56
B.2.2 RESUITS ...ttt b e re e 58

(08 T T T g Y- OSSPSR 65
DiSCUSSION AN CONCIUSIONveuiiiiiiiiti ettt st re s e 65

5.1 THESIS SUMIMAIYeiitieiiiieiieeieeee st e et ste et et este et e s esbeeteeseesbeensesseestaenseeraenteensesneeneas 65

5.2 FULUIE FESBAICHvieieieie sttt bbbttt ettt e b neens 65

5.3 RESOUITES ...ttt ettt sttt sttt ettt b e s st et e e ab e e bt e s sbe e beeenbeesbeeebeenbeeanneen 66

[E =T =] 0TSSR 67
APPENTIX LI COUR ...ttt ettt b bbbt e et bbb bt enes 70
APPENUIX 2: FIQUIES. ...ttt bbbttt et b et b ettt e et e b et e bbb e b enes 82
APPENAIX 32 TADIES ..ot e bbb arrs 86

List of Tables

Table 1: Alternative distributions used in the research

Table 2: Features descriptive statistics for size per dist_type
Table 3: Features descriptive statistics for median per dist_type
Table 4: Features descriptive statistics for skewness per dist_type
Table 5: Features descriptive statistics for kurtosis per dist_type
Table 6 Features descriptive statistics for sigma_n_ratio per dist_type
Table 7: Data distribution after splitting
Table 8: Model parameters

13

37

38

39

40

41

44

46

Table 9: Best thresholds based on the validation set

Table 10

Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:

Table 17

: Tests power per alternative family on 10% level of significance
Table 18 Sample sizes
Table 19:
Table 20:
Table 21:
Table 22:
Table 23:
Table 24:
Table 25:

47

Quality statistic of the models on applied_threshold

52

Summary instance report

55

Sensitivity errors (FN) per alternative family

55

List of normality tests used in the power comparison

57

"new_test" Threshold used on each significance level

58

Tests power per alternative family on 1% level of significance

61

Tests power per alternative family on 5% level of significance

62

63

86

FN instances with the lowest score from the validation set on rf model
Overall tests power on 1% significance level

87
88

Overall tests power on 5% significance level

88

Overall tests power on 10% significance level

88

Tests power per distribution at 1% significance level

88

Tests power per distribution at 5% significance level

95

Tests power per distribution at 10% significance level

101

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:

Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36

List of Figures

PDF of Normal distribution (Normal distribution, 2020)

Probability density function for Beta variate p: v, ®

Probability density function for Student’s t variate, t: v

Probability density function for the Chi-Squared variate x2: v

Probability density function for the Log-normal variate L: m, o

Probability density function for Weibull variate W: n,

PDF of Tukey lambda distribution (Tukey lambda distribution, 2019)
Probability density function for the Laplace variate L: a, b

Probability density function for the rectangular variate R: a, b

Probability density function for the truncated normal variate X: y, 6,a, b
Support vectors and margin representation

Nonlinear decision boundary

Density plot for "size"

Density plot for "median”

Density plot for "skewness"

Density plot for "kurtosis"

Density plot for "sigma_1_ratio"

Density plot for "sigma_2_ratio"

Density plot for "sigma_3_ratio™

Accuracy on each threshold

ROC on the Test set

ROC on the Unseen set

Feature importance in "rf” model

Feature importance in "gbm” model

Feature importance in "svmRadial” model

Frequency of FN errors per size

Overall power comparison on 1% significance level

Overall power comparison on 5% significance level

Overall power comparison on 10% significance level

Boxplot for size per dist_type

Boxplot for median per dist_type

Boxplot for kurtosis per dist_type

Boxplot for skewness per dist_type

Boxplot for sigma_1_ratio per dist_type

Boxplot for sigma_2_ratio per dist_type

Boxplot for sigma_3_ratio per dist_type

14
15
16
17
18
19
20
21
22
28
29
38
39
40
41
42
43
43
48
50
50
53
53
54
55
59
60
60
82
82
83
83
84
84
85

Abstract

Normality tests are very important in statistical inference; their purpose is to know if the
data is sampled from the normal population. The normality of the data is a prerequisite for several
parametric statistics such as t-test, ANOVA, and regression analysis. Violation of the normality
assumption may vyield incorrect results and wrong decisions. There are many tests available to
detect departure from normality for a random sample. But these tests sometimes lead to
contradicting results. Moreover, some of them can be applied under certain conditions. In this
research, we build a machine learning classification model to predict the “normality” of the data
using several features: size, skewness, kurtosis, median, and percentage of data lies within 1, 2,
and 3 standard deviations. To find the best classification technique that fits our data, three models
created using three classification techniques: Random Forest (RF), Gradient Boosting Machines
(GBM), and Support Vector Machines (SVM). The evaluation phase showed high accuracy and
ROC_AUC for the three models with few points in favor of the (RF) model. Power comparison
was also executed for (RF) model against seven statistical tests: Shapiro-Wilk (SW), Anderson-
Darling (AD), Jarque-Bera (JB), Shapiro-Francia (SF), Kolmogorov-Smirnov (KS), Cramer-von
Mises (CVM), and Lilliefors (Lillie). The comparison concluded using a Monte Carlo simulation
on 25 alternative distributions on different sample sizes. The results showed significantly higher

power for the model comparing to the other normality tests.

Laile
sl 5 Slaa¥) Y A 4l dage (Normal distributions tests)xsdall a) sill <l jLial ae

eobod b g Cllll paadall a3 53l oagadall a3 5l iy dny) 55 aatinn (g0 03 sale i) CilS 1) La dd yre 5 Lgie
)8 szl) gam of (Sey il 13 8a5 axe t-test, ANOVA, regression analysis :Jie Cilslas) sasl
Lany s Aailite =8) a8 gla¥) Qe A ey (mjall 13 aadins I <l HLEay)) (e el aa o8 BhlA

el AV alad Ll aladtal ga Caaall s (e) Cargd) Al ana Jie Al 330 oyl o dda g i Lellad

Bac Cilba aladiuly Caiual 73 gai L) Canall 138 Jglay Al ol LaaWil 4 5lie s o35 13 (058 Of Sy 7350
A bxe Qi)il 3 52 5 1 Gania S Al bl 4 giall dpul) g Jases ol 5 edaléill g ol jasVl 5 Al aaa Jie UL
L O aladinly g aled A L) & ¢ Ll ol Ciieal gl Juadl e giall 352 5 & jlae))
Gradient Boosting Machines (GBM), and Support Vector Machines <Random Forest (RF) izl
(RF) 73503 bl ddagsy dliail ae 2301 #3laill 4le ROC_AUC af 5 4dle Cayiai 48y militl) & yekal (SVM)
,Shapiro-Wilk (SW) :dis g all 13 ardins o Al Gl UAT Bae ae Sl 138 e 30 LAY 45 i
,Kolmogorov-Smirnov (KS) ,Shapiro-Francia (SF) ,Jarque-Bera (JB) ,Anderson-Darling (AD)
3lae aladinly "Power test" JI wsluls 455l cas Lilliefors (Lillie) s <Cramer-von Mises (CVM)
ISy) ¢ yelal o Aalide Ao alaal 8 el &y sill o saiy ¥ 55 25 e "MonteCarlo Simulation”

AV) LEAYL 2 e paall LA e Y1 s sl L el

Vi

Chapter One

Introduction

The normal distribution is an underlying assumption of many statistical procedures.
Parametric tests such as correlation, regression, t-tests, and analysis of variance are based on the
assumption that the data follows a normal distribution. When the assumption does not hold, it is
hard to draw accurate and reliable conclusions about the data (Ghasemi & Zahediasl, 2012). Visual
plots such as P-P plot and statistical tests such as Shapiro-Wilk, Chi-square, D’ Agostino-Pearson,
Jarque-Bera, and others are the classical methods usually used to detect non-normality (Das &
Imon, 2016).

Some of the existing normality tests can only be applied under certain conditions. For
example, the Shapiro-Wilk test has a limitation on the size of the sample where it does not perform
well on samples with size more than 50 (Shapiro, Wilk, & Chen, 1968). Moreover, different tests
of normality often produce different results®. The contradicting results are misleading and often
confuse statisticians.

In this research, we try to leverage the power of machine learning techniques to build a
new test that could be with comparable performance with the existing tests. Machine learning
offers the ability to build a model that learns from experience. By providing examples of normal
(negative) and non-normal (positive) examples, the model can learn the characteristics of each of
these classes to a level that it can classify correctly new examples to the correct normality class

(Bishop, 2006).

! Several comparisons between the normality test described in section 2.2

1.1 Background

The normal distribution, also known as Gaussian distribution is one type of continuous
probability distributions. It appears as a bell curve (Figure 1) where it is symmetric about its mean,
which is identical to its mode and median. 68%, 95%, and 99% of the data fall within 1, 2, and 3
standard deviations respectively (Patel & Read, 1996).

(Forbes, Evans, Hasting, & Peacock, 2011) The normal distributions have the following

density function, usually noted as N (u, 52):

2
0%) = ——e2le) -
f(x,,u,O')—amez(), 0<x <o

Where u is the mean, and o is the standard deviation. Figure 1 shows the p.d.f of the distribution

of multiple examples of u and o2.

10

08

0z

0o

Figure 1: PDF of Normal distribution (Normal distribution, 2020)

The normal distribution is special as its two parameters (u and o?) are mutually
independent and provide us with complete information on the shape and location of the distribution
(Casella & Berger, 2001). The independence of the two parameters characterizes the normal
distribution from other distributions (Lukas, 1942). The normal distribution is unimodal and it has

two inflection points located 1 standard deviation from the mean (Patel & Read, 1996).

If X~N(u,0?), then the random variable Z = Xf:” has an N(0,1) distribution, known as

standard normal distribution and it is described by p.d.f

1.2

1 _
p(x) = \/T_ne 2

This function is symmetric around x = 0, where it attains its maximum value 1/v/2m and has
inflection points at x = 1 and x = —1 (Casella & Berger, 2001).

Normal distributions are the most importantly used in natural and social sciences to
represent random variables. Quantities such as examination grades, snowflakes sizes, and other
phenomena are approximated the normal probability density function (Lyon, 2014). The
importance is mainly due to the central limit theorem, which states that the sum of independent
and identically distributed random variables converges to a normal distribution as the number of
samples increases regardless of the type of distribution of the sampled variables. This theorem
provides theoretical bases for why so many variables we see in nature appear to have
approximately a normal probability distribution (Hazewinkel, 1994).

Normality tests are used to determine if the data is sampled from Normal distribution. The
normality of the data is an assumption need to be verified before applying several parametric
statistics such as t-test, linear regression analysis, discernment analysis, and analysis of Variance
(ANOVA). When the assumption is violated, the accuracy of the conclusions about the data is
questionable and not reliable (Ghasemi & Zahediasl, 2012).

The normality test assess the likelihood that a given data set {x, ..., x,,} comes from the
normal distribution. The null hypothesis H,is that the observations are distributed normally versus

the alternative H,that the observations are not distributed normally. There are two sets of methods

that can be used to examine normality, visual methods, and statistical test methods (Ghasemi &
Zahediasl, 2012).

Visual plots such as the P-P plot are useful to visualize the distribution of the data but they
usually not enough to conclude decisions about the normality of the data. Hence, a variety of
statistical tests have been developed in this area such as Shapiro-Wilk, Anderson Darling,
Kolmogorov-Smirnov tests, and others. These tests are parametric aims to measure the probability

of departure from normality for the data set on different significant levels.

1.2 Problem definition

The departure from normality is very critical in statistical inference. Biased interpretation
can be inferred if the normality assumption is violated. Normality tests have traditionally been
designed as classical statistical hypothesis testing procedures and, to the best of our knowledge,
this has been the only way used so far to find a departure from normality.

The long list of tests developed in the literature can make it hard for statisticians to select
the appropriate test to use®. Moreover, these statistical tests are sensitive to the size of the data as
shown in the study of (Oztuna, Elhan, & Tuccar, 2006).

In this research, we are proposing a new approach to testing normality. In this approach,
we use the Machine Learning tools to develop a classification model that can classify the sample
data to the correct underlying distribution with less sensitivity to the nature of the underlying

distribution of the data.

2 The tests and their details are explained in section 2.1 in this document

1.3 Research Objectives

In this research, we propose a new approach to testing the normality of the data using
Machine Learning (ML). Machine learning algorithms build a mathematical model based on
sample data, known as "training data", to make predictions or decisions without being explicitly
programmed to do so. This approach is known as supervised machine learning. Classification is
one type of supervised machine learning where the human provides the algorithm with pairs of
inputs and desired outputs, and the algorithm learn a general rule to produce the desired output
given an input it has never seen before (Mueller & Guido, S, 2016).

The idea of using machine learning in testing the normality was not explored in previous
literature we read as of the date of writing this research. In this research, we build a model that
learns the properties and the characteristics of both the normal and the alternative distributions by
providing examples of both classes. We expect the model to get enough experience to be able to
correctly classify the normality of the data regardless of the sample size and the underlying
distribution. One advantage of this approach compared to the classical tests is that it can provide
us with additional measures to the power of the test. The power measures the ability to detect one
type of the classes — the non-normality- while in the classification models, additional quality
metrics are available to measure the performance on detecting the two classes, such as Accuracy,

Specificity, and Sensitivity.

1.4 Limitations of the study

Results and conclusions from a Monte Carlo simulation in comparing powers across

various distributions are seriously limited in generalizability beyond those distributions. The

generalizability of the results depends on the design and how much coverage of different

probability distributions is included in the study. In chapter 3, we show a wide range of alternative

distributions added to the scope of the research by which we expect this offers a greater potential

for generalizing results comparing to the distributions used in previous studies.

Related to that, the generalizability of the proposed model could be questionable; results

and conclusions of any classification model are limited to the data set it trained with (Cai, et al.,

2020). In chapter 3 we try to overcome this limitation by having enough representations of the

distributions in the training and by building a model from a set of features resilience to the change

in the type of distribution such as skewness and kurtosis.

Another limitation of this study is the choice of power as the base measure to compare our

model against other statistical tests. This comparison is limited to only one of the two sides of the

quality of any classification model. The Power which stands for “Recall” in machine learning

terminology, evaluates the performance of detecting the positive class —alternative class in our use

case- and does not evaluate how the model performs in detecting negative class -normal class in

our use case. This is because the classical normality tests are statistical tests; if the test does not

have evidence to reject the null hypothesis (the sample has normal distribution), it does not mean

it accept it. This limitation prevents us from using other quality measures such as Accuracy and F-

Measure to compare the quality of the classifier against other tests on both normal and alternative

classes.

Chapter Two

Literature review

2.1 Normality tests

A large number of methods and tests available to detect departure from normality where
each test has its characteristics and power. We can look for departure from normality using two

ways: Visual methods of normal plots or significant tests (Ghasemi & Zahediasl, 2012).

2.1.1 Visual tests

The researcher can validate the normality of the data using graphical methods such as P-P
plot, Q-Q plot, histogram, box plot, or stem-and-leaf plot. These plots are useful to visualize the
distribution of the data but they often do not provide reliable evidence about the normality of the
data. The plots are subjective, a plot can be interpreted into different levels of “normality” by
different people. Moreover, judging using these visual methods required enough statistical
experience of the researcher to take a correct decision. These imply to use more formal and reliable

tests (Yap & Sim, 2011).

2.1.2 Statistical tests

The effort of developing normality tests was initiated by (Pearson, 1895) who used the
skewness and kurtosis as indicators of departure from normality. The number of different tests for
normality seems to be boundless. The researchers classified the tests in different ways. In this

section we present the tests by classifying them into four main groups as following:

Empirical Distribution Function (EDF) tests: These tests involve measuring the
discrepancy between the cumulative distribution function of the normal distribution and
the empirical distribution function of the sample (D’ Agostino & Stephens, 1986). The most
popular tests of this type: Kolmogorov-Smirnov (KS) test (1933), Cramer-von Mises
(CVM) test, and Anderson-Darling (AD) test. The Anderson-Darling (AD) test (1974) is
the recommended one in this family (D’Agostino & Stephens, 1986). KS test is highly
sensitive to extreme values, and it has low power and it should not be used in testing
normality (Throde, 2002).

Moments tests: These tests use the skewness and the kurtosis (the second and the third
moments respectively) of the sample to calculate the test statistic (D’ Agostino & Stephens,
1986). Popular tests are Jarque-Bera (JB) test (1975) and the D’ Agostino-Pearson Omnibus
test (DP) (1973).

Regression and correlation tests: The tests are based on the correlation between the
empirical data and corresponding scores under normality (D’Agostino & Stephens, 1986).
Shapiro-Wilk (SW) (1965) test is the popular one in this family. It has good power for
sample sizes up to 50. For large samples, the computation of its test statistic is much
complicated (Das & Imon, 2016). Other tests in this group are the Shapiro-Francia (SF)
test and Ryan-Joiner test

Chi-Squared test: It is not recommended for continuous distributions as it computes the
number of observations instead of the observations themselves when calculating the test

statistic. The chi-Squared test should not be used (D’ Agostino & Stephens, 1986).

2.2 Previous comparisons

The literature shows many attempts to compare different normality tests trying to find the
best performing one. Most of the comparisons are based on comparing the power of the tests on
the alternative distributions using Monte Simulation on different alternatives with different sample
sizes and levels of significance. The results have a lot of variation.

(Shapiro, Wilk, & Chen, 1968) Indicates that SW (Shapiro and Wilk 1965) has the best
power comparing to \/b—l (statndard third moment), b,(standard fourth moment), Kolmogorov-
Smirnov, Cramer-Von Mises, Weighted CM, Modified KS, chi-squared, and u (Studentized range)
on alternatives of sample size (10, 15, 20, 35, 50).

In (Muyombya, 2017) study that examined the power of the tests on large sample sizes,
Kolmogorov-Smirnov was the most powerful normality test regardless of the nature of the
distribution. Followed by Shapiro-Wilk, Shapiro-Francia, Anderson-Darling, Jaque-Bera, and
D’ Agostino-Pearson.

(Alizadeh & Arghami, 2011) Compared the power of several tests and concluded that
Jaque-Bera is the most powerful test for symmetric distributions and Shapiro-Wilk is the most
powerful for asymmetric distributions with support(—oo, o). It also reveals Kolmogorov-Smirnov
and Shapiro-Wilk have the best power for alternatives supported by (0, o)

A study by (Islam, Normality Testing- A New Direction, 2011) compared tests to ensure
the validity of the t-statistic used to assessing the significance of the regressors. It shows that
Anderson-Darling is the best option comparing to Jarque-Bera, D'Agostino and Pearson, and
Lilliefors (a modification of Kolmogorov-Smirnov test).

(Razali & Wah, 2011) Compared the power of Shapiro-Wilk, Kolmogorov-Smirnov,
Lilliefors, and Anderson-Darling. Shapiro-Wilk was the most powerful test then Anderson-

9

Darling, Lilliefors, and Kolmogorov-Smirnov on both symmetric and asymmetric alternatives.
This research also reveals that these tests have low power in a small sample size (less than 30).

(Islam, Ranking of Normality Tests: An Appraisal through Skewed Alternative Space,
2019) Evaluated the performance of several tests by using a proposed stringency framework of
comparing tests. The research compares Kolmogorov-Smirnov, Anderson-Darling, Jaque-Bera,
Shapiro-Wilk, D’ Agostino, Coin (COIN), Bonett, and Seier test (Tw). And he recommends to use
Tw test for slightly skewed, Anderson-Darling and Shapiro-Wilk for moderately skewed, and all
except COIN and Tw for highly skewed alternatives.

(Afeez, 2018) Compared several tests on five classes of alternatives: Near Normal,
Symmetric long-tailed, Symmetric short-tailed, Asymmetric long-tailed, and Asymmetric short-
tailed. SW had good power in a wide range of alternatives comparing to Anderson-Darling,
Cramer—von Mises, Jaque-Bera, Chi-Square tests. Jaque-Bera was poor for symmetric short tails,
but it is appropriate for symmetric long-tailed distributions.

(Seier, 2002) Claimed that Tests based on skewness and kurtosis are not powerful against
symmetric alternative distributions where the kurtosis is close to that of the normal distribution.
These tests are more powerful when the alternative is more peaked than normal.

Some of the studies and investigations share similar results. For example, Shapiro-Wilk
was in a good rank in some of them, but it was not recommended in others. Having a clear answer

to the best performing test seems a very complicated task.

10

2.3 Limitations of the statistical tests

A large number of comparisons with different results confuse the researcher on which
normality test to apply where dozens of tests are available to use. Based on what we show from
some of the previous literature, no single test is uniformly more powerful than others.

Comparing the tests based on their power using simulation didn’t succeed having an answer
on what is the best test to use, as each test has its area of strengths and weaknesses. The power of
the tests depends critically on two factors: The alternative, which can’t be specified when doing
the test, and as we saw that the same test has different powers when applied on different
distributions. The other factor is the sample size, which is critical as well since the normality tests
will always reveal non-normality as the sample size grows. (Oztuna, Elhan, & Tuccar, 2006) Show
that for small sample size, the normality tests have small power to reject the null hypothesis when
it should be rejected. And for large sample sizes, the normality tests become much sensitive and

the test can be significant even in case of a small deviation from normality.

11

Chapter Three
Methodology

In this research, we propose a new approach to testing normality using state of the art ML
techniques. In this chapter, we will start explaining the different steps to be executed to build and
evaluate the classification model. Then we describe the method that is used in comparing the

quality of the “new test” against other popular statistical tests of normality.

3.1 Alternative Distributions

Alternative distributions can be classified into five major families based on the distribution
skewness and kurtosis: asymmetric long-tailed (ALT), asymmetric short-tailed (AST), symmetric
long-tailed (SLT), symmetric short-tailed (SST), and close to normal (CTN) (Shapiro, S. & Wilk,
B. & Chen, J. 1968). The alternative distributions used in this study were selected from these
families on different levels of parameters to cover a wide range of data. Five instances from each
family are chosen as shown in Table 1, and an overview of the corresponding probability
distributions is provided later in this section. The alternatives will be used in the proposed model
as positive examples, and also used in the later phase of comparing the power of the new test

against other statistical tests.

12

Table 1: Alternative distributions used in the research

Asymmetric_Long_Tailed | Weibull(0.5, Weibull(2, LogNormal Y2 (4) x2(10)

(ALT) 1) 1) ©.1)

Asymmetric_Short_Tailed Beta(2, 1) Beta(3, 2) LogNormal LogNormal | LogNormal

(AST) (0, 0.15) (0, 0.25) (0, 0.35)

Symmetric_Long_Tailed | (1) t(2) t(4) t(7) Tukey (10)

(SLT)

Symmetric_Short_Tailed Uniform(0,1) Beta(1.3, Beta(1.5, Tukey(1.5) Truncated

(SST) a B 1.3) 1.5) normal (-2,
2)

Close_To_Normal (CTN) | Tukey (0.1) Tukey (0.2) | Tukey (5) t(10) Laplace(0,
10)

3.1.1 Beta Distribution

(Walck, 2007) (Forbes, Evans, Hasting, & Peacock, 2011) The Beta distribution denoted

by Beta(a,) is a continuous distribution given by:

xv—l(l _ x)w—l
0<x<1
B(v, w)

flvw) =

Where the quality B(v, w) is the Beta function defined in terms of Gamma function as:

Il w)

B(v,w) = F'(v+ w)

For v = w = 1, the Beta distribution simply becomes a uniform distribution between zero and one.

The mean and the variance of the Beta distribution given by

E(X) =

v+ w

YW
w+wiPv+ow+1)

Var(X) =

13

Figure 2 shows the Beta distribution on different levels of v and w.

2.5 -
v=2 w=4 v=4, w=2
2.0 4
2
£ 154
=
]
E
g 1.0 <
0.5 4
0.0 T \
0.0 0.5 1.0
Quantile x

Figure 2: Probability density function for Beta variate 8. v, @

3.1.2 Student t-distribution

(Walck, 2007) (Forbes, Evans, Hasting, & Peacock, 2011) The Student’s t-distribution (or

simply the t-distribution) denoted by t(v) is given by

v+1
—F(2 v> (1+x—2)_v7+1;v>0
ot (z) v

Where v = n — 1 is the degrees of freedom and t is a real number. The functions of " and f are

fEv) =

the usual Gamma and Beta functions. The mean of t-distribution is 0 for v > 1, otherwise

undefined. The variance is given by

v

Y v>2
Var(X) = w, 1<v<2
undefined, otherwise

Figure 3 shows the t distribution of different values of v.

14

0.5 4

v =100

Probability density

Quantile x

Figure 3: Probability density function for Student’s t variate, t: v

3.1.3 Chi-squared Distribution

(Walck, 2007) (Forbes, Evans, Hasting, & Peacock, 2011) The chi-squared distribution
denoted by y?%(v) with v degrees of freedom is the distribution of a sum of the squares of v
independent standard normal random variables. Where a set of data is represented by a theoretical
model, the chi-squared distribution can be used to test the goodness of fit between the observed

data points and the values predicted by the model, subject to the differences being normally

distributed. It is given by

a1 -2
o= @2

The mean of the chi-squared distribution is equal to the degrees of freedom v, and the variance is

double the mean = 2v. Figure 4 shows the distribution of different values of v.

15

0.15 o

0.10 o

Probability density

0.05 -

0.00 T T T T T T |
0 5 10 15 20 25 30 35
Quantile x

Figure 4: Probability density function for the Chi-Squared variate ?: v

3.1.4 Log-normal Distribution

(Walck, 2007) (Forbes, Evans, Hasting, & Peacock, 2011) The Log-normal distribution
denoted by Lognormal(y, a?) is a continuous distribution of a random variable whose logarithm
is normally distributed. The lognormal distribution applies to random variables that are constrained
by zero but have a few very large values. The resulting distribution is asymmetrical and positively

skewed. It is given by

1 (1nx—u)2
2 o

e H
XoV 2T

An Alternative parameter of scale is m where m = e#. The mean and the variance of the Log-

fasp o) =

xX,u, 0 >0

normal distribution are given by

2

o
E(X) =e""7
Var(X) = (e — 1)e2#+o’

Figure 5 shows the Log-normal distribution on different values m and o.

16

Probability density

Quantile x

Figure 5: Probability density function for the Log-normal variate L: m, o

3.1.5 Weibull Distribution:

(Walck, 2007) (Forbes, Evans, Hasting, & Peacock, 2011) The Weibull distribution
denoted by weibull(k, A) is named after the Swedish physicist Waloddi Weibull (1887-1979) who
described it in detail in 1951. Weibull variate is commonly used as a lifetime distribution in
reliability applications. The two-parameter Weibull distribution can represent decreasing,
constant, or increasing failure rates. The 8 parameter is the shape parameter, and 7 is simply a
scale parameter and the variable y = x/n has distribution

90) = ByFre™”’

The Weibull distribution is given by

B (x\F-1 _(5)5
flxB.m) = —(—) e W ;x>0
nn
The mean and the variance of the Weibull distribution are given by

E(X) = nr(1+%>

17

Var(X) = n?|T (1 + %) - (F (1 + é))z

Figure 6 shows the Weibull distribution on different levels of g and 7.

0.8 -

0.6

Probability density

0.4

0.2

0.0

Quantile x

Figure 6: Probability density function for Weibull variate W: n, 8

3.1.6 Tukey Distribution

(Stephanie, 2015) (Joiner & Rosenblatt, 1971) Tukey lambda distribution denoted by
Tukey(A) is a continuous symmetric probability distributed defined in terms of its quantile
function, named after the American mathematician John Wilder Tukey (1915-2000). Unlike most
other probability distributions, there isn’t a “one size fits all” formula for probability density
function. It is defined in terms of quantiles where the quantile function Q(p) (i.e. the inverse of

the cumulative distribution function) and the quantile density function (g = dQ/dp) are:

%[p’l—(l—p)’l], A#+0
Qp; M) = p
IOg (m) , A=0

q(;) = "+ (1 -p)*

18

Figure 7 shows the Tukey lambda distribution on different levels parameters.

11
l [
09 |
08
0.7
06 :
05
04 | -
03 :

0.2
o1 /
J

0
-4 -2 0 2 4

> > >
I
|

M= O

\
/

//

Figure 7: PDF of Tukey lambda distribution (Tukey lambda distribution, 2019)

3.1.7 Laplace Distribution

(Walck, 2007) (Forbes, Evans, Hasting, & Peacock, 2011) Laplace distribution sometimes
called double exponential distribution is a continuous probability distribution named after Pierre-
Simon Laplace (1749-1827). It is a symmetric distribution whose tails fall off less sharply than the
Gaussian distribution but faster than the Cauchy distribution. The distribution has an interesting
feature as the best estimator for the mean . is the median and not the sample mean. The distribution

is given by

a—Xx
f(x;a,b) = — eXp(_xéa)' x<p

Zb exp(— 5), xX=2u

Where a is the location parameter, and b > 0 is the scale parameter. The variance of the distribution

is 2b2. Figure 8 shows the Laplace distribution on different levels of a and b.

19

1.0

Probability

Il
[=]

density a

0.5 A b=05

I | | I 1
-2.5 -1.5 -0.5 0.5 1.5 2.5

Quantile x

Figure 8: Probability density function for the Laplace variate L: a, b

3.1.8 Uniform (Rectangular) Distribution

(Walck, 2007) (Forbes, Evans, Hasting, & Peacock, 2011) Uniform distribution denoted
by U(a, b) is a symmetric probability distribution defined by two parameters a and b where a the
location parameter is and (b — a) is the scale parameter. It is widely used as the basis for the
generation of random numbers for other statistical distributions. Where every value in the range
of the distribution is equally likely to occur. This is the distribution taken by uniform random

numbers. It is given by

;a<x<bh

fCxab) = —

The mean and the variance of the Uniform distribution are given by:
1
E(X) = > (a+b)

Var(X) = %(b —a)?

Figure 9 shows the p.d.f of the Uniform distribution.

20

Probability density

0

Quantile x

Figure 9: Probability density function for the rectangular variate R: a, b

3.1.9 Truncated Normal Distribution

(Burkardt, 2014)The truncated normal probability density function is defined in two steps.
We choose a general normal PDF by specifying parameters g and o2, and then a truncation range
(a, b). The p.d.f associated with the general normal distribution is modified by setting values
outside the range to zero, and uniformly scaling the values inside the range so that the total integral
is 1. Suppose X has a normal distribution with mean p and variance o2and lies within the interval
(a,b), with —oo < a < b < oo. Then the p.d.f of X truncated on a < X < b is given by:

1 955
7o(54) -0 (45

o g

)

f(x; u,0,a,b) =

Figure 10 shows the p.d.f of the Truncated normal distribution on different levels of a and b.

21

Truncated Normal Half Normal
a = -1 a= =1
=2

Probability density

Normal
u=1
6=1

Quantile x

Figure 10: Probability density function for the truncated normal variate X: u, 0, a, b

3.2 Model construction

In this section, we describe the process of building the classification model of testing the
normality. We start by describing the normality test as a classification problem. Then we describe

the data that we will use for this purpose and the steps of training and evaluating the model.

3.2.1 Process

This problem is a binary classification problem, we predict if the sample data has departure
from normality based on some properties such as skewness and kurtosis. The target variable in this
classification problem is the type of distribution where “alternative” represents the positive class
and “normal” represents the negative class. We did not choose the positive class to represent the
normality — which could make more sense for others— because we need to compare the power of
this model with other tests that try to check if the sample is significantly departing from normality

and not vice versa.

22

In the process of creating the model, we are following the steps of Train-Validate-Test. In
the training phase, we train a model using training data from positive and negative classes. Where
in the validate stage we run the model on the validation data set and tune the model parameters to
yield the best quality that can be achieved by the model. In this stage, we set in the model the
threshold (cut off) points that have optimal quality. The tuned model is then tested on different test

sets and the quality of this test represents the final quality of the model.

3.2.2 Classification Techniques

In this research, we aim to find the best classification technique that has the best
performance in our use case, so we tend to build models using several methods and choose the one
with the best quality. There are plenty of classification algorithms available to use. For example,
the caret® (Classification And REgression Training) package in R has more than 180 classification
techniques from different families. It is hard to examine all of the techniques to find the best one
that fits our data, and it is not straight forward to select from this long list. So, in this research, |
refer to previous studies that compared these techniques and evaluated their quality on several data
sets.

(Fernandez-Delgado, Cernadas, Barro, & Amorim, 2014) Compared 179 classifiers from
17 families in 121 data sets, and (Wainer, 2016) compared 14 techniques on 115 binary datasets.
The two studies show that Random Forest (RF) (Breiman, 2001), Gradient Boosting Machines
(GBM) (Friedman, Greedy Function Approximation: A Gradient Boosting Machine, 2001), and
Support Vector Machines (SVM) (Boser, Guyon, & Vapnik, 1992) classifiers are the most

performing ones and they are not significantly different from each other. As a result, we will build

3 http://topepo.github.io/caret/index.html

23

http://topepo.github.io/caret/index.html

three models from these classifier types and compare their quality as part of this research. In the

subsections below, we are providing a brief explanation of these classifiers.

3.2.2.1 Random forest (RF)

Random forest is an effective model for both classification and regression problems. In
classification learning, it is an ensemble classifier constructed from a collection of decision trees
that improve the prediction over a single decision tree. Random forests are a combination of tree
predictors such that each tree depends on the values of a random vector sampled independently
and with the same distribution for all trees in the forest. Random Forests are supervised machine
learning algorithms. As opposed to other machine learning models like neural networks, Random
Forests make it easy to see the features that contribute to regression or classification and the
importance of the variable to the decision (Breiman, 2001).

The data set is split randomly with replacement into different bags — this is called data

bagging- each one represents a decision tree. For each bag, a different set of features with size vVn

or g is selected from feature set n and cross-validation are used to select which feature set is most

appropriate for this specific bag — this is called Feature Bagging. So each data bag will have a
different set of features chosen for creating the Decision Tree (Breiman, 2001).

In Random Forests, cross-validation is estimated internally during the run because of the
bagging procedure. For each bag, based on sampling, about 62% unique samples from the original
dataset are used. Hence, about a third of the samples are not present in ith tree construction. These
left-out data will be used for cross-validation, to identify the most useful feature set combination,
among the multiple randomly chosen feature bags for that data bag. The proportion of samples
classified incorrectly from the cross-validation set (for that data bag) overall classifications of the

cross-validation set is the error estimate of the system. This error estimate is also referred to as the

24

out-of-bag (OOB) error estimate. OOB is a mean prediction error on each training sample j, using
only the trees that did not have sample j in the bootstrap sample (Rebala, Ravi, & Churiwala,
2019).

For a new data point, the prediction of its class is the aggregation of the predicted classes
from all trees. The final result is aggregated using the general voting technique as shown in the

below equation:

B
1
f =§Zlfn<x>

Where:
f = the final prediction from RF
B = number of trees
n = the index of decision tree
fn = the result from decision tree n

x = the vector of the new data point to predict

Random Forest enables us to see which features are important for the variable to the
decision. The intuitive notion in determining the variable importance is that if the variable is
important, then rearranging the values of the variable in constructing the trees will not reduce the
prediction accuracy. For a variable m, compute the number of correct classifications of the tree for
out-of-bag cases. Permute values of variable m and then compute the classification of the out-of-
bag case for the tree. Compute the difference in the number of correct classifications after
permutation and before permutation. The average difference over all the trees is the importance

score of the variable m (Ayyadevara, 2018).

25

3.2.2.2 Gradient boosting machines (GBM)

Gradient boosting is a machine learning classification technique based on creating an
ensemble model from different models built sequentially as follows. It starts by creating an initial
model using a tree or linear regression that fits the data. The second model is built and its objective
is to accurately predict the cases where the first model performs poorly. The combination of these
two models should have higher performance than either model alone. This booting process
repeated many times until reaching the minimum prediction error. Gradient refers to the error, or
residual, obtained after building a model. Boosting refers to improving. The technique is known
as gradient boosting machine, or GBM. Gradient boosting is a way to gradually improve (reduce)
error (Friedman, Greedy Function Approximation: A Gradient Boosting Machine, 2001)

To see how GBM works, let’s begin with an easy example. Assume you’re given a model
M (which is based on decision tree) to improve upon. Let’s say the current model accuracy is 80%.
We want to improve on that. We’ll express our model as follows:

Y = M(x) + error

Y is the dependent variable and M (x) is the decision tree using the x independent variables.
Now we’ll predict the error from the previous decision tree:

error = G(x) + error2

G(x) is another decision tree that tries to predict the error using the x independent
variables. In the next step, similar to the previous step, we build a model that tries to predict
error2 using the x independent variables:

error2 = H(x) + error3

Now we combine all these together:

26

Y =M(x)+ G(x)+ H(x) + error3
The preceding equation is likely to have an accuracy that is greater than 80% as
individually model M (single decision tree) had 80% accuracy, while in the above equation we are
considering 3 decision trees (Friedman, Hastie, & Tibshirani, Additive logistic regression: a

statistical view of boosting, 2000)

3.2.2.3 Support vector machines with Radial Basis Function Kernel (RBF SVM)

Support vector machines (SVM) is a binary classifier, it classifies the data points by
creating the optimal hyperplane boundary that has the maximum margin for the data points. SVM
can handle linear separable data points as shown in the previous figure and can handle data points
that are not linear separable by mapping data points into higher dimensional space using “kernel”
functions. SVM classifier creates a hyperplane of N-1 dimensions for n-dimensional feature
vectors to separate the data into two classes. For example, for feature vector of size 2 the
hyperplane is a line and can be represented by the following equation (Boser, Guyon, & Vapnik,
1992):

y=w.f(x)+b
Where:

f(x) = the feature vector

w = the weight assigned to feature vector

b = the bias term
All values of y greater than the function value are classified as class 1, and all other values are

classified as class 2.

27

12

10

Figure 11: Support vectors and margin representation

Figure 11 shows valid class boundaries of a, b, and c represented by red lines. All of these
boundaries classify the data points into two classes correctly. However, line b provides the largest
margin for both the classes. SVM looks for boundaries that maximize the margin for the data points
using sophisticated quadratic programming algorithms. The points closest to the lines a and ¢
represent the support vectors that provide the boundary lines for the classes (Rebala, Ravi, &
Churiwala, 2019).

For practical problems, there is higher noise in the data, or the data points may not be
linearly separable. For complex nonlinear boundaries, it can be shown that by converting a
nonlinear lower-dimensional space into a higher-dimensional space, the feature space can become
linearly separable. For example, Figure 12Error! Reference source not found. shows data points
that cannot be classified with linear classifiers in two-dimensional space. For these data points,
using quadratic terms in a function to represent the data in an alternate dimension allows a linear

classifier to draw a linear boundary.

28

Figure 12: Nonlinear decision boundary

Converting data points to higher dimensional space requires mapping them to a function
d(x), where the function ¢(x) has a higher number of variables or higher-order variables that can
represent the feature variables in the input feature vector. This requires computing distance or a
similarity measure between each pair of data points using the dot product. This can be very
computationally intensive since you have to compute O(N?) dot products for N data points.
Moreover, finding the right mapping function can be tricky. To solve this problem, a trick based
on Mercer’s theorem is used. A simplified explanation of Mercer’s theorem states that a positive
definite kernel function can be decomposed to a dot product. Conversely, instead of computing a
mapping function, one can simply use a kernel function to represent the dot product of the mapping
function. Hence, simply by choosing a kernel function, computing similarity between data points
for a high dimensional feature space is very efficient. This allows for computing distance measures
without actually computing ¢(x) (Boser, Guyon, & Vapnik, 1992).

Kernels are similarity functions or distance functions that support certain dot product

properties. Kernels allow substitution of a single function for a higher dimensional feature vector.

29

This kernel function would fit the data model for the input sample space as if it is based on the
high dimensional feature vector. This makes computing distance or similarity very easy and also
allows constructing the model with small input spac. Many kernels exist such as Polynomial and
sigmoid functions. It is not obvious which kernel works best. Radial bias kernel (RBF) is one of

the commonly used kernels in SVM and can be represented by the below equation (Bishop, 2006):

K(x,y) = e”G"/20"

3.2.3 Data set

The first stage of building a classification model is to prepare a data set for training and
testing. We used the simulation code to generate samples from alternative and normal distributions,
where each generated sample represents a data point in our data set. Several statistics and features
were calculated on each sample, where the features and the sample underlying distribution
represent the data point/vector. The samples to be scaled before calculating the features to improve
the scalability of the model and avoid biasedness toward a specific set of sample sizes or
distributions.

Data set of 10,000 data points to be generated from both alternative and normal
distributions having a 1:1 ratio between positives and negatives aiming to balanced data sets. The
positive labels generated from the alternatives are listed in Table 1. The negative labels to be
generated from the normal distribution on different levels of mean and standard deviation. Both
sets of labels will be generated from 200 different sample sizes randomly selected from the range
of [5, 2000].

We will divide the data set into “seen” and “unseen” sets. The “unseen” data represents

samples from specific distributions that will not be used in the process of building the model. This

30

set will be kept as hold out data to measure the quality of the model on data that it didn’t see before

which can give us an indicator on the generalizability of the model.

3.2.4 Training

Different models will be trained using the three techniques: Random Forest (RF), Gradient
Descent Boosting (GBM), and Support vector machines with Radial Basis Function Kernel (RBF
SVM). Each model will be evaluated and the best performing one will be considered and used in
the later stage of comparing against statistical normality tests. The features of the model are
calculated from each sample and saved in CSV format. The features to be used in the model are
properties of the sample data such as sample size, median, skewness, kurtosis, Sigma_1_ratio
(Percentage of data lies within 1 standard deviation), sigma_2_ration, sigma_3_ratio. This is an
initial set of features we can start with to build a baseline. Other features probably will be added
during the time of building the model.

Feature selection techniques could be applied to the model to find the most significant
features and drop the non-important ones. Techniques such as Feature Importance of Random
Forest, Recursive Feature Elimination (RFE), and ANOVA F-test could be used in this study. The

goal is to keep the model with a minimal set of features that gives the highest possible quality.

3.2.5 Evaluation

Several metrics are available to use for evaluating the quality of a classification model. We
prefer to use the Accuracy measure in this problem more than other measures like F-Measure. The
Accuracy represents the combination of Specificity (1- a) and Sensitivity (Power) which are the
measures we will use in comparing the quality of the model with other statistical tests.

31

The validation data set will be used to evaluate the quality of the models from several
classification techniques. The models will be tuned by applying different model parameters such
as the number of trees in the Random Forest classifier and sigma in the SVM classifier. The model
with the best performance to be chosen for the next steps.

The selected model will be evaluated on the test set and the unseen data sets. Different

quality measures and charts to be used to report and analyze the performance of the proposed test.

3.3 Power comparison test

A power comparison test to be concluded between different normality tests including the
new proposed model using Monte Carlo simulation. The alternative distributions considered are
the ones listed in Table 1. The comparison will be on three levels of significance o = 0.01, o =
0.05, and a=0.10 to investigate the effect of the significance level on the power of the test.
Corresponding thresholds of the proposed test on each level of significance can be calculated by
choosing the thresholds that give specificity of 0.99, 0.95, and 0.90 for 0.01, 0.05, and 0.10 level
of significance respectively. Samples of size n = 10, 20, 30, 50, 100, 200, 500, and 1000 will be

used in the simulation from each alternative with 1,000 repetitions.

3.4 Toolbox

We will use R as the main programming language in this research. It offers data scientists
and statisticians a vast toolbox and libraries for data loading, modeling, visualization, and analysis.

RStudio with R 3.6.2 is used. We use the caret* package to build and evaluate the classification

4 http://topepo.github.io/caret/index.html

32

http://topepo.github.io/caret/index.html

models as it provides the data scientists with a simple interface for executing many classifiers with
automatic parameter tuning for the models . This enables the researcher to use the state of the art
classification techniques with minimal knowledge of the underlying algorithms (Kuhn, 2008). We
will use the caret package to train and tune the models, feature selection, and variable importance
estimation. MonteCarlo® library will be used to simulate the power of the model and the statistical

normality tests.

5 https://cran.r-project.org/web/packages/MonteCarlo/vignettes/MonteCarlo-Vignette.html

33

https://cran.r-project.org/web/packages/MonteCarlo/vignettes/MonteCarlo-Vignette.html

Chapter Four

Simulation and Results

4.1 Classification model

In this section, we show the process of building the normality classification model. We
start by describing the data and the set of features used in training. Then we describe the training
process and show the quality of the generated models. The last part of this section analyzes the

errors generated from the models.

4.1.1 Data generation

Data set of size 10,000 data points to be used in training and evaluation was simulated
using R code from both normal and alternative distributions. Each data point represents a sample
of size n generated from alternative (positive) or normal (negative) distribution. Of the data, 50%
of the data points are simulated from the positive class (“class_1") and the other 50% are simulated
from the negative class (“class 2”). The data intended to have a 1:1 ratio between positives and
negatives aiming to balanced data sets.

The positive labels were generated from the alternatives are listed in Table 1. The negative
labels were generated from the normal distribution on different levels of mean and standard
deviation. Both sets of labels are generated from 200 different sample sizes selected from the range
[5, 2000] listed in Table 18 in the appendix 3. Total of 50 samples sampled from each size, 25
created from the alternative distributions, and another 25 samples created from the normal
distribution. The negative 25 labels on each size generated as following: Five means were

randomly selected from the range [-1000, 1000]. For each mean, five samples generated from a

34

normal distribution with a coefficient of variation equals to 0.01, 0.1, 0.3, 0.6, and 1.0. Using
different levels of variation aims to train the model on representative data set to decrease the
biasedness to specific distributions. Code snippet 1 in the appendix 1 shows the code used to

generate the data.

4.1.2 Exploring data

Features are calculated on each data point and during training. Many features were
examined and the following set is the ones that selected to build the model. Function calc_stats()
in Code snippet 1 shows how these features are calculated in R

e Size: The size of the sample. The smallest sample has size 8, and the largest sample has

size 1998. See Table 18 in the appendix 3.

e Median: The midpoint of the values that divide the set into two groups after they have
been ordered from the smallest to the largest, or the largest to the smallest (Mulholland &

Jones, 1968). The median for the normal distribution should be equal to the mean (Patel &

Read, 1996). And because we scaled the samples, the median should be 0 for normal

samples. The bigger the departure of the median from 0, the more likely the sample has

departed from normality.
e Skewness: It is the measure of the symmetry of a probability distribution. A data set is
symmetric if it looks the same to the left and the right of the center point. The skewness

for a sample of size n is calculated using the formula:

Yii(x—%)3 /n

SS

skewness =

Where X = mean, s = standard deviation.

35

The skewness for the normal distribution is zero. Negative values for skewness indicate
the data is skewed to the left, and a positive value indicates a skewness to the right
(Hazewinkel, 1994).

Kurtosis: It is a measure of whether the data is heavy-tailed or light-tailed relative to the
normal distribution. Distributions with large kurtosis exhibit tail data exceeding the tails of

the normal distribution. The formula for calculating the kurtosis is:

i1 (i — x)* /n

st

kurtosis =

Where X = mean, s = standard deviation.

The kurtosis for the normal distribution is 3, it is less or greater than 3 for other distributions
(Hazewinkel, 1994).

Sigma_1_ratio: The percentage of the data that is located within 1 standard deviation.
Normal distribution should have 68% of the data falls within 1 standard deviation (Patel &
Read, 1996).

Sigma_2_ratio: The percentage of the data that is located within 2 standard deviations.
Normal distribution should have 95% of the data falls within 2 standard deviations (Patel
& Read, 1996).

Sigma_3_ratio: The percentage of the data that is located within 2 standard deviations.
Normal distribution should have 99% of the data falls within 3 standard deviations (Patel

& Read, 1996).

The target variable is “dist_type”, it has two possible values:
“class_1”: The positive class; the class of the alternative distribution
“class_0”: The negative class; the class of the normal distribution

36

As we see from the explanations above, the features are expected to be highly correlated
with the target variable “dist_type”. Table 2 to Table 6 shows the descriptive statistic for the
features for each class of the target variable. Figure 13 to Figure 19 shows the density plot for
each feature by dist_type. Figure 30 to Figure 36 in the Appendix 2 show also the box plots for
these variables. By looking at the statistics we can observe:

e The size has the same statistic for class_0 and class_1 as expected and it is uniformly

distributed according to the density plot.

Table 2: Features descriptive statistics for size per dist_type

size (sample size)

minimum 8 8

median (IQR) | 1,007.00 (459.25, 1,462.50) | 1,007.00 (459.25, 1,462.50)
mean (sd) 993.25 + 593.97 993.25 + 593.97

maximum 1,998 1,998

37

class 0 —— class 1 —

Oe+00 1e-04 2e-04 3e-04 4e-04 5e-04 GeOd

Figure 13: Density plot for "size"

e The median feature has a similar statistic of minimum, median, mean, and maximum for
both classes. But the density plot shows that the median for class_0 is denser around zero

where it is more flatten on the range of the distribution for class_1.

Table 3: Features descriptive statistics for median per dist_type

median
minimum -0.59 -0.51
median (IQR) 0.00 (-0.02, 0.02) -0.02 (-0.11, 0.02)
mean (sd) -0.00 £ 0.05 -0.05+0.12
maximum 0.45 0.35

38

class 0 —— class_ 1 —

15
I

median

Figure 14: Density plot for "median™

Skewness has a different range of values in the classes. Skewness ranges from [-1.3, 1.25]

for class_0 while its range for class_1 is much bigger [-30.22, 29.26].

Table 4: Features descriptive statistics for skewness per dist_type

skewness
minimum -1.30 -30.22
median (IQR) -0.02 (-0.07, 0.05) 0.05 (-0.07, 0.78)
mean (sd) -0.01£0.12 0.60 +3.95
maximum 1.25 29.26

39

class 0 ——

class 1 —

skewness

Figure 15: Density plot for "skewness™

Kurtosis has very low values for class_0 comparing to class_1. The maximum value in

class_1 is 4.83 while it spans from 1.36 to 986 for class_1.

Table 5: Features descriptive statistics for kurtosis per dist_type

kurtosis
minimum 1.43 1.36
median (IQR) 2.96 (2.87, 3.07) 3.55 (2.58, 5.62)
mean (sd) 2.96 +0.21 28.95 + 104.02
maximum 4.83 985.85

40

class 0 ——

25

20

1.5

1.0

0.5

0.0
1

kurtosis

Figure 16: Density plot for "kurtosis"

The density plots for sigma_1_ratio, sigma_2_ratio, and sigma_3_ratio show different

distributes of these features between class_0 and class_1. The range of the values is almost

similar but the values are significantly dense around the expected ratios - explained in the

section above - in class_0 more than class_1.

Table 6 Features descriptive statistics for sigma_n_ratio per dist_type

sigma_1 ratio

minimum 0.50 0.38

median (IQR) 0.68 (0.68, 0.69) 0.70 (0.66, 0.76)

mean (sd) 0.68 £ 0.02 0.72+£0.11

maximum 0.88 1.00
sigma_2_ratio

minimum 0.87 0.88

median (IQR) 0.95 (0.95, 0.96) 0.96 (0.95, 0.97)

41

Feature “class_0” (Normal) “class_1” (Alternative)
mean (sd) 0.95+£0.01 0.96 £ 0.02

maximum 1.00 1.00

sigma_3 ratio

minimum 0.98 0.94
median (IQR) 1.00 (1.00, 1.00) 0.99 (0.99, 1.00)
mean (sd) 1.00 £ 0.00 0.99+£0.01
maximum 1.00 1.00

class 0 —— class 1 —

30
l

10
l

0.4 0.6 0.8 1.0

sigma_1_ratio

Figure 17: Density plot for "sigma_1_ratio"

42

class 0 —— class 1 —

0.90 0.95 1.00
sigma_2_ratio

Figure 18: Density plot for "sigma_2_ratio"

class 0 —— class 1 —

250 300
I I

200
1

150
I

50
I

0.94 0.96 0.98 1.00

sigma_3_ratio

Figure 19: Density plot for "sigma_3_ratio"

These observations indicate that these features are very good candidates to be used in the
model and predict the distribution type of a sample. In the next section, we will start the process

of building the model.
43

4.1.3 Splitting data (train, validate, test, unseen)

“Unseen” data set were created by selecting one distribution for each of the five alternative

families and all samples generated from 0.6 coefficient of variation normal family. These represent

20% of the data in which it split the data into so this process results in 8,000 “seen” and 2,000

“unseen” data sets. The reason of having the unseen data is to test the final model on distributions

that the model didn’t see before, to validate the scalability of the model and its ability to generalize

to new data by predicting how our model will perform on other distributions not included in this

research. The remaining data points of the other four types of both alternative and normal

distributions represent the data set that will be used in training and testing, they are randomly

divided into 60% train, 20% validate, 20% test.

Table 7 shows the distribution of the data sets after splitting.

Table 7: Data distribution after splitting

Close_To_Normal

tukey(0.2), tukey(5), t(10), laplace(0, 10)

Symmetric_Long_Tailed

1(2), t(4), 1(7), tukey(10)

Symmetric_Short_Tailed

beta(1.3, 1.3), beta(1.5, 1.5), tukey(1.5),

truncatednormal(2, 2)

Asymmetric_Long_Tailed

weibull(2, 1), lognormal(0, 1), chisq (4), chisq

(10)

Asymmetric_Short_Tailed

beta(3, 2), lognormal(0, 0.15), lognormal(O,

0.25), lognormal(0, 0.35)

Normal c.0.v =0.01

All samples

Normal c.o.v=0.1

All samples

44

Normal c.0.v =0.3 All samples

Normal c.o.v =1.0 All samples

Close_To_Normal tukey(0.1)

Symmetric_Long_Tailed | t(1)

Symmetric_Short_Tailed | uniform(0, 1)

Asymmetric_Long_Tailed | weibull(0.5, 1)

Asymmetric_Short_Tailed | beta(2, 1)

Normal c.0.v = 0.6 All samples

4.1.4 Training

In this section, we describe the stage of training the classification models and tuning them
using the validation set to find the appropriate parameters, mainly the optimal cutoff point. In later

sections, we will evaluate the tuned models on different test sets.

4.1.4.1 Model generation

We tried to train three models using different classification techniques: Random Forest
(RF), Gradient Boosting Machines (GBM), and Support Vector Machines (SVM). Experimentally,
we trained other classifiers such as Naive Bayes, K Neighbors, logistic regression, decision tree,
neural networks (nnet). And we found they have lower quality than the former three so we
excluded them from the study and focused only on the two boosting classifiers (RF and GBM) and

the geometrical classifier (SVM). The goal of using multiple classifiers is - as we stated earlier in

45

the methodology - is to find the best technique that can fit our data. “caret” package used to train

the three models. The x vector consists of the seven features we described above: size, median,

skewness, kurtosis, sigma_1_ratio, sigma_2_ratio, and sigma_3_ratio. The binary variable

dist_type is the y target variable which has two possible values: class_1 (the positive

class/alternative), class_0 (the negative class/normal).

“train”

To train a model using “caret*, we can pass different options to the training process through

and “trainControl” APIs to enable finding optimal parameters for the models. The main

options we set in training are:

“Method”: the resampling method. It specifies which technique “caret” will use for
resampling the training data while it searches for the best tuning parameters. We choose
“cv” with 10 number of folds as the resampling method.

“Metric”: The summary metric to use in selecting the optimal model. Possible values are
“Accuracy" and "Kappa", we choose “Accuracy”.

Other options can be found at Code Snippet 2 that shows the source code used to train the
three modes.

Three models (rf, gbm, and svmRadial) were generated and the best parameters found by

“caret” tuning for each of them can be found in Table 8.

Table 8: Model parameters

rf

mtry 2 Number of variable is randomly collected to
be sampled at each split time.

n.trees 500 |Number of branches will grow after each
time split

46

gbm n.trees 400 |Number of trees (the number of gradient
boosting iteration)
Interaction.depth 10 number of splits it has to perform on a tree
(starting from a single node)
shrinkage 0.1 It is considered as a learning rate
n.minobsinnode 10 The minimum number of observations in
trees' terminal nodes.
svmRadial | sigma 0.5257 [The radial kernel smoothing parameter
C 64 The penalty parameter of the error term. It

controls the trade off between smooth
decision boundary and classifying the
training points correctly.

4.1.4.2 Model validation

Classification models by default apply 0.5 as a threshold, where prediction scores above

this threshold are considered positive and predictions below this threshold are considered negative

(Mueller & Guido, S, 2016). To find the optimal quality, the “validation” set is used to find the

threshold that produces the highest accuracy of the models. Table 9 and Figure 20 show the best

thresholds found in each model. We will use these thresholds to evaluate the quality of the models

using the “test” and “unseen” data sets. We will refer to it as “applied_threshold” in the following

text in this document.

Table 9: Best thresholds based on the validation set

rf 0.6290000 0.940000
gbm 0.6952947 0.934375
svmRadial 0.3833224 0.919375

47

K
0.9 \ S
= o
I.l’
S
W
0.81 .
s
.
. model
g\ ¢
@ a gbm
= L
3071 . —_
ow ’
S svmRadial
Il’
s
.
0.6 ’
“
“
K
.
s
e
“
0.5 ; - .
1.00 0.75 0.50 0.25 0.00

threshold

Figure 20: Accuracy on each threshold

The next section is to evaluate the quality of the models using different techniques, one of
them is the “Accuracy” metric in which we will use the “applied_threshold” as a cut-off point to

assign a positive and negative tag for each prediction.

4.1.5 Evaluation
4.15.1 Evaluation Metrics

ROC (Receiver Operating Characteristics) is a graph that shows the performance of a
classification model at all classification thresholds. The ROC curve is created by plotting the true
positive rate (TPR) against false positive rate (FPR). Below formulas show the calculation of these

rates (Tharwat, 2020).

TP
TPR = Recall = Sensitivity = P =0
eca ensitivity ower =5 TFN

48

FP
FPR =1 — Specificity = m

Specificity = TNR = TN £ FP

Where:

- TP: The instance is labeled positive (alternative), and correctly classified by the
model as positive (alternative)

- TN: Theinstance is labeled negative (normal), and correctly classified by the model
as negative (normal)

- FP: The instance is labeled negative (normal), and incorrectly classified by the
model as positive (alternative)

- FN: The instance is labeled positive (alternative), and incorrectly classified by the

model as negative (normal)

ROC-AUC (Area under the ROC Curve) is a metric that represents a degree or measure of
separability that tells how much the model can distinguish between classes. AUC ranges from 0 to
1. The closest the AUC toward 1, the better the performance of the model. A poor model has AUC
near to 0. Figure 21 and Figure 22 show the ROC-AUC graphs of each model on the “test” and
“unseen” sets. ROC-AUC is very high and close to 1 for the three models on the “test” set and a
bit lower on the “unseen” set than the “test” set. Table 10 indicates that the ROC-AUC on the

“test” set IS 0.978, 0.966, and 0.957 for rf, gbm, and svmRadial models respectively.

49

0.751
e model
:é’«. s
£ — gbm
B 050 -
e —
g ,—t
’,’ — svmRadial
0.25
0.00 = . . .
1.00 0.75 0.50 0.25 0.00
specificity
Figure 21: ROC on the Test set
1.00

model
=
2 050 oo
2" — i
i

— svmRadial
0.251
0.00-+F . ! .
1.00 075 0.50 0.25 0.00
specificity

Figure 22: ROC on the Unseen set

50

Using the “applied threshold” of each model found in the validation step, we calculated
the accuracy of the models on the test set and also on the “unseen” set. The reason behind choosing
the threshold on a data set (“validation”) and test the model on a different set (“test”) is to make
sure the threshold chosen is not biased toward a specific set and keeps valid in other data. The
“unseen” set is useful to examine how the model behaves on predicting new data points not seen
in training nor validation. Table 10 contains statistics of each model on “validation”, “test”, and
“unseen” sets. We can notice that the three models have high “Accuracy” and “ROC-AUC”. And
also we can observe from this table the following:

e The “Accuracy” is almost identical for both “validation” and “test” set. This means the
“applied_threshold” does not over-fit the “validation” set.

e The “Accuracy” on “unseen” data is not significantly different from what is reported for
the “validation” and “test” sets. This implies that the models are reasonably valid to make
predictions on new data sets not included in the process.

e ROC-AUC is high and almost the same in “validation” and “test” sets. It is less by 2-3
points in the “unseen” set but it is a very minor degradation.

e Models are “specificity” oriented. The specificity is higher than the sensitivity by 12-20
points on different data sets. This implies that the model's ability to avoid predicting
alternative data as normal is higher than its power/recall to correctly recognize an
alternative data set. This is important as the impact of making a mistake of assigning an
“alternative” class to a “normal” data set could be worse than missing an “alternative”
instance. We aim to decrease the former error as much as possible as many statistical

analysis tools assume normality of the underlying distribution of the data.

o1

e Random Forest (“rf”’) has a bit higher quality than the other two classifiers. We will

nominate it as the final model we choose to represent our solution of predicating normality.

Table 10: Quality statistic of the models on applied_threshold

rf validation 0.6290000 0.9736311| 0.8872180| 0.9925187| 0.940000
rf test 0.6290000 0.9777190| 0.8694030| 0.9899497| 0.929375
rf unseen 0.6290000 0.9437715| 0.7960000| 0.9880000 | 0.892000
gbm validation 0.6952947 0.9672998 | 0.8922306| 0.9763092| 0.934375
gbm test 0.6952947 0.9659413| 0.8706468| 0.9824121| 0.926250
gbm unseen 0.6952947 0.9401380 | 0.8090000| 0.9650000| 0.887000
svmRadial validation 0.3833224 0.9552716| 0.8872180| 0.9513716| 0.919375
svmRadial test 0.3833224 0.9570052 | 0.8681592| 0.9723618| 0.920000
svmRadial unseen 0.3833224 0.9165810| 0.8100000| 0.9580000| 0.884000

(Quality evaluation code can be found in Code Snippet 3 in Appendix 1)

To find the important features in the model, feature importance plots generated in Figure

23, Figure 24, and Figure 25 for the three models that show the importance score on a scale of 0

to 100. Feature importance is useful to assess the features used in the model by identifying the

predictive power of the features. A score assigned to each of them that indicates the relative

importance of the feature when making a prediction.

We can observe that the most important feature in predicting the normality at the three

models is “kurtosis”. “Skewness” is also at the top three features at all models which indicates its

52

significance in prediction. The importance of other features varies from model to model. This is

expected as each model applies different techniques in learning the problem.

kurtosis

sigma_3_ratio

skewness

sigma_1_ratio

sigma_2_ratio

median —
size
T T T T T
0 20 40 60 80 100
Importance
Figure 23: Feature importance in "rf” model
1 1 1 1 1
kurtosis *
skewness EE—
sigma_2_ratio —
size —*
sigma_1_ratio —*
median —*
sigma_3_ratio
T T T T T
0 20 40 60 80 100
Importance
Figure 24: Feature importance in ""gbm” model

53

kurtosis

sigma_3_ratio

skewness

median

sigma_1_ratio

sigma_2_ratio

size

T T T T T
0 20 40 60 80 100

Importance

Figure 25: Feature importance in "svmRadial ” model

4.1.5.2 Error analysis

Error analysis is an important stage in evaluating a classification model. We summarize
the errors generated by the model trying to understand more the areas we can improve. We
generated an instance report that contains the status of each instance of type FN or FP in the
“validation”. FP and FN are the specificity and sensitivity errors respectively. We are executing
error analysis on the “validation” set so that any further improvement in the model can be tested
on another test (the test set) to avoid biasedness. Table 11 shows a summary of the instances of
the three models. As we can notice, most of the errors are sensitivity errors where the models did
classify incorrectly alternative distributions as a normal class. Table 12 shows the sensitivity errors
for the models at each alternative distributing family. We can observe that the majority of the
errors happen on Symmetric_Short_Tailed and Close_To_Normal distributions. Figure 26 shows
the distribution of FN errors per sample size. The errors are distributed almost uniformly with a
little skewness to the right that may indicate less power in small size but it is not clear enough to

54

induce such a conclusion. Table 19 in the appendix 3 shows 10 instances that got the lowest score
by the RF model, these instances have features similar to what we can expect for normal
distributions. These findings point to the areas that we can start investigating if more improvement

is required for the quality of the model.

Table 11: Summary instance report

Rf 710 8 88 794
Gbm 713 19 85 783
svmRadial 711 40 87 762
Table 12: Sensitivity errors (FN) per alternative family
Asymmetric_Long_Tailed | 2 2 1
Asymmetric_Short_Tailed | 5 6 5
Symmetric_Long_Tailed |1 1 4
Symmetric_Short_Tailed | 46 44 44
Close_To_Normal 34 32 33
"
6.
34
5
. ‘i I
UI SDID 1UIDD ‘ISIUU 2UIDEI

size

Figure 26: Frequency of FN errors per size

55

4.2 Power comparison

In previous sections, we showed how we generated a classification model to predict the
“non-normality” of a sample data. In the evaluation step, we tested the models on different test
sets and the results indicate a high quality (accuracy) of the models. In this section, we will evaluate
the classification model in terms of the “normality test” and will examine its quality by comparing
its power with other statistic tests. We choose in this comparison the “rf” model to represent the
new machine learning approach of testing normality. It was the one with the highest performance
as we saw in the evaluation steps before. For the next sections, we will call the created

classification model (rf) as a “new_test” when we compare it with other tests.

4.2.1 Procedure

A power comparison test was concluded between the “new _test” model and other statistical
tests using the Monte Carlo simulation procedure. Monte Carlo is a method to estimate the
probability and the expected value of a random variable by repeating a random process many times.
If we find that we are unable to compute a probability or an expected value exactly with
mathematics, we can still attempt to estimate it by making the computer repeat the random
experiment many times, keeping track of the result of the experiment each time. This technique is
known as Monte Carlo simulation, after the famous Monte Carlo casino in the Principality of
Monaco (Hasting, 1970). For example, to find the integral between 3 and 6 in a normal distribution
of mean 1 and standard deviation 10, one could use the probability tables. But it can be simulated

by sampling from that distribution 100,000 times and see how many values are between 3 and 6.

56

Related to our problem, we will run a Monte Carlo simulation to estimate the power of the
normality tests. The power of the test is the probability that the test rejects the null hypothesis
(Hy: Sample is normal) when it should be rejected (sample is actually “not-normal”). We will
estimate the power of the tests participating in this comparison by letting each test to detect the
departure from normality on a set of samples from “alternative” distributions. We repeat this
process many times and the ratio of detected samples out of all examined samples represents the
power of the test.

Statistical normality tests were chosen to be in this comparison based on their popularity.
Seven tests included in this research are listed in Table 13. We used a wide range of alternative
distributions in this comparison. A total of 25 different distributions were chosen from the main
five families shown in Table 1. The power was estimated on three levels of significance: o= 0.01,
a = 0.05, and a=0.10. Samples of size 10, 20, 30, 50, 100, 200, 500, and 1000 were used in the

simulation from each alternative with 1,000 repetitions.

Table 13: List of normality tests used in the power comparison

Shapiro-Wilk (SW) Anderson-Darling (AD)

Jarque-Bera (JB) Shapiro-Francia (SF)

Kolmogorov-Smirnov (KS) Cramer-von Mises (CVM)

Lilliefors (Lillie)

The “new_test” is a binary classification model that was tuned in the “validation” stage
with a fixed threshold of 0.629 in which a prediction above this threshold is considered as
“alternative” a prediction below this threshold as “normal”. The question is how we will run this
model on three different levels of significance. We can answer this question simply if we know

that:

57

a = FPR = 1 — Specificity
So, to run the model on a = 0.05 level of significance, we need to apply the threshold that
gives specificity = 1 — 0.05 = 0.95. Table 14 shows the thresholds used in the “new_test” —

“rf” model - on each significance level using the “validation” set.

Table 14: "new_test" Threshold used on each significance level

0.01 0.99 0.65
0.05 0.95 0.45
0.1 0.9 0.35

MonteCarlo R package® used to run the simulation, complete code can be found in Code

Snippet 4 in the Appendix 1.

4.2.2 Results

In this section we discuss the results of the power of normality tests including the
“new_test” we propose in this research. We will show the power of the tests from different
perspectives. First, we calculate the overall power of each test on all alternative distribution per
each sample size. Then, we calculate the power of each test per each alternative family. And
finally, we show the power of each test on each of the 25 alternative distributions.

By looking at Figure 27, Figure 28, and Figure 29 that show the overall power of the tests
on 0.01, 0.05, and 0.1 significance levels, we can see that the “new_test” is the most powerful

compared to other statistical tests on all level of significance. It has high power on a small sample

5 https://cran.r-project.org/web/packages/MonteCarlo/vignettes/MonteCarlo-Vignette.html

58

https://cran.r-project.org/web/packages/MonteCarlo/vignettes/MonteCarlo-Vignette.html

size especially on 0.05 and 0.1 significance levels. Table 20, Table 21, and Table 22 in the
Appendix 2 show the power in tabular format.

Table 15, Table 16, and Table 17 show the power of the tests per alternative family on
the three levels of significance. The three tables indicate that the “new_test” significantly has
higher power than other tests in every family. It is different than other tests where it gives high
power on small sample sizes. On the other hand, it is consistent with other tests that they are most
powerful in detecting Asymmetric-Long-Tailed alternatives and they give the lowers power on
Close-To-Normal distributions. But the “new test” has relatively high power on all families
comparing with other tests. Power results on every distribution can be found in Table 23, Table

24, and Table 25 in Appendix 3.

075~
test
AD
CVM
o 150 - —= 1B
q_;D""D
g —+ K5
e —=- Lillie
—t= MNew Test
0.25- SF
Sw
0.00-
0 250 500 750 1000
Size

Figure 27: Overall power comparison on 1% significance level

59

Povwer

0.75-

0.00-

2580] 750 1000
Size

Figure 28: Overall power comparison on 5% significance level

——————1

250 B0O 750 1000
Size

Figure 29: Overall power comparison on 10% significance level

AD

CWVM

JB

KS

Lillie
Mew_Test
SF

=

I B A

AD

CVM

JB

KS

Lillie
Mew_Test
SF

Sw

T+ttt B

60

Table 15: Tests power per alternative family on 1% level of significance

10 0.29 0.02 0.02 0.03 0.01 0 0.02 0.03
30 0.26 0.06 0.05 0.06 0.08 0 0.05 0.07
50 0.27 0.1 0.1 0.1 0.11 0 0.07 0.1
100 0.33 0.19 0.2 0.21 0.19 0 0.15 0.19
200 0.41 0.34 0.36 0.34 0.26 0.02 0.28 0.31
500 0.54 0.51 0.47 0.45 0.35 0.18 0.42 0.52
1000 0.66 0.59 0.53 0.51 0.41 0.38 0.45 0.59
10 0.5 0.27 0.25 0.23 0.11 0 0.19 0.25
30 0.69 0.55 0.52 0.49 0.47 0.15 0.43 0.53
50 0.82 0.67 0.62 0.59 0.6 0.3 0.53 0.65
100 0.95 0.87 0.78 0.74 0.77 0.4 0.67 0.83
200 0.99 0.99 0.94 0.91 0.93 0.51 0.83 0.98
500 1 1 1 1 1 0.73 0.98 1
1000 1 1 1 1 1 0.94 1 1
10 0.33 0.03 0.03 0.03 0.01 0 0.02 0.03
30 0.36 0.13 0.1 0.09 0.09 0 0.06 0.11
50 0.44 0.28 0.22 0.17 0.15 0 0.11 0.24
100 0.64 0.56 0.47 0.4 0.31 0 0.28 0.49
200 0.8 0.8 0.71 0.64 0.66 0.04 0.54 0.76
500 0.94 0.97 0.94 0.92 0.97 0.4 0.83 0.98
1000 0.99 1 1 0.99 1 0.64 0.96 1
10 0.45 0.21 0.24 0.24 0.13 0.01 0.22 0.23
30 0.68 0.52 0.53 0.53 0.46 0.15 0.48 0.55
50 0.79 0.64 0.61 0.61 0.6 0.31 0.57 0.67
100 0.89 0.76 0.72 0.7 0.78 0.5 0.66 0.78
200 0.95 0.86 0.81 0.79 0.89 0.59 0.74 0.87
500 0.99 0.96 0.92 0.91 0.98 0.67 0.85 0.97
1000 1 0.99 0.99 0.98 1 0.78 0.93 1
10 0.38 0.01 0.01 0.01 0 0 0.01 0.01
30 0.53 0.06 0.05 0.04 0 0 0.02 0.02
50 0.64 0.2 0.16 0.11 0 0 0.05 0.07
100 0.76 0.61 0.49 0.35 0.01 0 0.16 0.43
200 0.81 0.8 0.75 0.66 0.6 0 0.46 0.77

61

500 0.81 0.8 0.8 0.8 0.8 0.24 0.77 0.8
1000 0.81 0.8 0.8 0.8 0.8 0.64 0.8 0.8
Table 16: Tests power per alternative family on 5% level of significance

10 0.69 0.08 0.09 0.08 0.02 0 0.08 0.1
30 0.5 0.13 0.14 0.15 0.11 0 0.12 0.15
50 0.47 0.18 0.19 0.2 0.15 0 0.17 0.2
100 0.54 0.31 0.33 0.32 0.24 0.02 0.27 0.3
200 0.59 0.47 0.45 0.43 0.31 0.08 0.39 0.45
500 0.65 0.57 0.54 0.52 0.39 0.31 0.49 0.59
1000 0.75 0.67 0.62 0.6 0.49 0.4 0.55 0.66
10 0.87 0.38 0.37 0.36 0.17 0.02 0.3 0.39
30 0.89 0.67 0.63 0.6 0.55 0.27 0.55 0.64
50 0.93 0.79 0.74 0.7 0.68 0.38 0.64 0.77
100 0.99 0.94 0.88 0.85 0.85 0.49 0.79 0.91
200 1 1 0.99 0.96 0.99 0.63 0.92 1
500 1 1 1 1 1 0.87 1 1
1000 1 1 1 1 1 0.99 1 1

10 0.76 0.1 0.09 0.09 0.02 0 0.08 0.1
30 0.68 0.29 0.25 0.21 0.13 0 0.17 0.26
50 0.72 0.48 0.41 0.36 0.23 0.01 0.27 0.42
100 0.84 0.7 0.64 0.57 0.52 0.04 0.48 0.66
200 0.93 0.91 0.83 0.79 0.83 0.21 0.71 0.88
500 0.99 0.99 0.97 0.96 0.99 0.57 0.92 0.99
1000 1 1 1 1 1 0.83 0.99 1

10 0.75 0.33 0.35 0.35 0.18 0.05 0.33 0.36
30 0.8 0.62 0.61 0.61 0.53 0.29 0.57 0.64
50 0.86 0.71 0.69 0.68 0.67 0.44 0.64 0.73
100 0.93 0.81 0.78 0.77 0.83 0.56 0.73 0.84
200 0.98 0.9 0.87 0.85 0.91 0.64 0.81 0.92
500 1 0.98 0.96 0.95 0.99 0.74 0.92 0.98
1000 1 1 1 0.99 1 0.84 0.97 1

10 0.8 0.06 0.06 0.06 0 0 0.05 0.05

62

30 0.77 0.25 0.21 0.16 0.01 0 0.1 0.11
50 0.79 0.49 0.38 0.3 0.01 0 0.18 0.3
100 0.85 0.76 0.66 0.56 0.33 0 0.39 0.66
200 0.86 0.81 0.8 0.77 0.8 0.07 0.67 0.81
500 0.83 0.81 0.81 0.81 0.81 0.53 0.81 0.81
1000 0.81 0.81 0.81 0.81 0.81 0.78 0.81 0.81
Table 17: Tests power per alternative family on 10% level of significance
10 0.86 0.13 0.15 0.14 0.04 0 0.14 0.16
30 0.71 0.2 0.22 0.22 0.13 0.01 0.2 0.22
50 0.69 0.26 0.28 0.27 0.19 0.02 0.25 0.28
100 0.68 0.39 0.4 0.4 0.25 0.05 0.37 0.38
200 0.67 0.53 0.51 0.5 0.34 0.15 0.47 0.53
500 0.72 0.63 0.59 0.58 0.45 0.37 0.54 0.64
1000 0.78 0.73 0.68 0.66 0.55 0.42 0.61 0.71
10 0.97 0.48 0.45 0.43 0.21 0.06 0.4 0.47
30 0.96 0.73 0.7 0.67 0.59 0.33 0.62 0.72
50 0.97 0.85 0.8 0.77 0.73 0.43 0.71 0.84
100 1 0.97 0.93 0.9 0.91 0.54 0.85 0.95
200 1 1 0.99 0.98 0.99 0.71 0.95 1
500 1 1 1 1 1 0.94 1 1
1000 1 1 1 1 1 1 1 1
10 0.92 0.17 0.18 0.16 0.03 0 0.13 0.17
30 0.85 0.4 0.37 0.32 0.18 0.01 0.27 0.37
50 0.86 0.57 0.51 0.45 0.31 0.03 0.38 0.51
100 0.93 0.8 0.72 0.67 0.64 0.11 0.6 0.75
200 0.96 0.94 0.89 0.85 0.91 0.33 0.79 0.93
500 0.99 1 0.98 0.98 0.99 0.68 0.96 0.99
1000 1 1 1 1 1 0.9 1 1
10 0.89 0.39 0.43 0.41 0.21 0.08 0.41 0.44
30 0.9 0.66 0.67 0.65 0.57 0.37 0.62 0.7
50 0.92 0.76 0.73 0.72 0.72 0.5 0.69 0.79
100 0.96 0.84 0.83 0.81 0.86 0.59 0.78 0.87
200 0.98 0.92 0.9 0.89 0.94 0.67 0.86 0.94

63

SST

“new_test” | SW

500 1 0.99 0.98 0.97 0.99 0.79 0.95 0.99
1000 1 1 1 1 1 0.87 0.99 1

10 0.93 0.15 0.13 0.13 0.01 0 0.11 0.1
30 0.89 0.41 0.33 0.28 0.01 0 0.21 0.24
50 0.88 0.62 0.5 0.42 0.03 0.01 0.3 0.44
100 0.9 0.8 0.74 0.66 0.6 0.03 0.52 0.74
200 0.88 0.82 0.81 0.8 0.81 0.19 0.74 0.82
500 0.84 0.82 0.81 0.82 0.82 0.67 0.82 0.82
1000 0.82 0.82 0.82 0.82 0.82 0.8 0.82 0.82

64

Chapter Five

Discussion and conclusion

5.1 Thesis summary

The results showed that using Machine Learning techniques is a valid solution for the
problem of detecting departure from normality for a data sample. We managed to build a
classification model using a minimal number of features that had a high ability to predict departure
from normality on all families of alternative probability distributions with high resilience to the
sample size. The “Accuracy” of the three classification models built in this research was high on
all data sets, including the “unseen” data which is a set of probability distributions held out from
the process to assess the ability of the model to generalize to new data sets not seen before. The
performance of the classification model as a normality test (“new test”) was validated by
comparing its power against the state of the art statistical normality tests. The results showed that
the “new_test” has significantly better power than the other tests on different levels of significance
and sample sizes. Another advantage of this approach is that the classical normality tests are
hypothesis tests, i.e. if a test failed to reject the null hypothesis (sample is normal) it does not mean
we can accept it, it can only give predictions on one of the directions. However, the "new_test" is

a classification model that can predict both cases, either normal or not.

5.2 Future research

The work done in this research could be a starting point for further development in the

direction of using machine learning models to solve statistical problems we used to solve by

65

classical statistical tests. Learning from data seems a very promising approach that could help in

solving problems related to the characteristics of the data. Future research on this topic could be:

Improve the quality -mainly sensitivity- of the models by doing thorough error analysis. We
can examine the areas that had low accuracy and try to understand the characteristics of these
areas aiming to find more features that could decrease the number of errors and improve the
quality.

Explore other ML technigues to solve this problem such as deep learning. We can also try an
ennsemble classifier of several statistical tests.

It is important to assess the applicability of converging a theory into real-life applications.
The next step is to encapsulate the model in a new R library published to the public to let this
functionality available for use by statisticians and data scientists as a new method for testing
the normality.

The model created in this research can be extended from binary (normal, alternative) to a
multiclass classification model to classify the sample into its underlying probability
distribution.

Explore Machine Learning techniques in other parametric and non-parametric tests

5.3 Resources

A live demo of the new_test is available to use’. The demo demonstrates the ability of the

classification model to predict the normality status of a sample and compare its results with the

seven classical normality tests. The source code used for this research is available as a GitHub

open source project®.

7 http://ec2-50-112-220-245.us-west-2.compute.amazonaws.com:3838/thesis-demo/

8 https://github.com/hsoboh/hussein-soboh-ms-thesis

66

http://ec2-50-112-220-245.us-west-2.compute.amazonaws.com:3838/thesis-demo/
https://github.com/hsoboh/hussein-soboh-ms-thesis

References

Afeez, B. (2018). Selection and Validation of Comparative Study of Normality Test. American
Journal of Mathematics and Statistics, 8(6), 190-201.

Alizadeh, H., & Arghami, N. (2011). Monte Carlo comparison of seven normality tests. Journal
of Statistical Computation and Simulation, 81(8), 965-972.

Ayyadevara, V. K. (2018). Pro Machine Learning Algorithms. Apress. doi:10.1007/978-1-4842-
3564-5

Bishop, C. (2006). Pattern Recognizition and Machine Learning. Springer.

Boser, B., Guyon, I., & Vapnik, V. (1992). A Training Algorithm for Optimal Margin
Classifiers. Proceedings of the Fifth Annual Workshop on Computational Learning
Theory, 144-152. doi:10.1145/130385.130401

Breiman, L. (2001). Random Forests. Machine Learning, 45, 5-32.
doi:10.1023/A:1010933404324

Burkardt, J. (2014, October 17). The Truncated Normal Distribution. Retrieved May 9, 2020,
from http://people.sc.fsu.edu/~jburkardt/presentations/truncated normal.pdf

Cai, X.-L., Xie, D.-J., Madsen, K., Wang, Y., Bogemann, S., Cheung, E., . .. Chan, R. (2020).
Generalizability of machine learning for classification of schizophrenia based on resting-
state functional MRI data. Human Brain Mapping, 41(1), 172-184.
doi:https://doi.org/10.1002/hbm.24797

Casella, L., & Berger, R. (2001). Statistical inference (2nd ed.). Cengage Learning.
D’Agostino, B., & Stephens, A. (1986). Goodness-of-fit Techniques. Marcel Dekker.

Das, R., & Imon, M. (2016). A Brief Review of Tests for Normality. American Journal of
Theoretical and Applied Statistics, 5(1), 5-12. doi:10.0.45.128/j.ajtas.20160501.12

Fernandez-Delgado, M., Cernadas, E., Barro, S., & Amorim, D. (2014). Do we Need Hundreds
of Classifiers to Solve Real WorldClassification Problems? Journal of Machine Learning
Research(15), 3133-3181.

Forbes, C., Evans, M., Hasting, N., & Peacock, B. (2011). Statistical Distributions (4th ed.).
Hoboken, New Jersey: John Wiley & Sons, Inc.

Friedman, J. (2001). Greedy Function Approximation: A Gradient Boosting Machine. The
Annals of Statistics, 29(5), 1189-1232.

Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: a statistical view
of boosting. Annals of Statistics, 28(2), 337-407. d0i:10.1214/a0s/1016218223

67

Ghasemi , A., & Zahediasl, S. (2012). Normality Tests for Statistical Analysis: A Guide for Non-
Statisticians. International Journal of Endocrinology and Metabolism, 10(2), 486-489.
doi:10.5812/ijem.3505

Hasting, W. K. (1970). Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 57(1), 97-109.

Hazewinkel, M. (1994). Encyclopedia of Mathematics. Springer.

Islam, T. (2011). Normality Testing- A New Direction. International Journal of Business and
Social Sciences, 2, 115-118.

Islam, T. (2019). Ranking of Normality Tests: An Appraisal through Skewed Alternative Space.
Symmetry, 11(827). doi:10.20944/preprints201905.0190.v1

Joiner, B., & Rosenblatt, J. (1971). Some Properties of the Range in Samples from Tukey's
Symmetric Lambda Distributions. Journal of the American Statistical Association,
66(334), 394-399.

Kuhn, M. (2008). Building predictive models in R using the caret package. Journal of Statistical
Software, 28(5), 1-26.

Lukas, E. (1942). A characterization of the normal distribution. Annals of Mathematical
statistics, 13, 91-83.

Lyon, A. (2014). Why are Normal Distributions Normal. The British Journal for The Philosophy
of Science, 65, 621-649.

Mueller, C., & Guido, S, S. (2016). Introduction to Machine Learning with Python. O’Reilly
Media.

Mulholland, H., & Jones, C. (1968). Fundamentals of statistics. Boston: Springer.
doi:10.1007/978-1-4899-6507-3

Muyombya, M. (2017). On empirical power of univariate normality tests under symmetric,
asymmetric and scaled distributions. International Journal of Scientific and Engineering
Research, 8(3).

Normal distribution. (2020, April 29). Retrieved May 9, 2020, from Wikipedia:
https://en.wikipedia.org/w/index.php?title=Normal_distribution&oldid=953810074

Oztuna, D., Elhan, A., & Tuccar, E. (2006). Investigation of four different normality tests in
terms of type 1 error rate and power under different distributions. Turkish Journal of
Medical Sciences, 36(3), 171-176.

Patel, K., & Read, B. (1996). Handbook of the Normal Distribution (2nd ed.). CRC Press.

Pearson, K. (1895). Contributions to the Mathematical Theory of Evolution. Il. Skew Variation
in Homogeneous. Philosophical Transactions of the Royal Society of London. A, 186,
343-414. Retrieved from https://www.jstor.org/stable/90649

68

Ramasubramanian, K., & Singh, A. (2019). Machine Learning Using R. Apress.
doi:10.1007/978-1-4842-4215-5

Razali, N., & Wah, Y. (2011). Power Comparisons of Shapiro-Wilk, Kolmogorov-Smirnov,
Lilliefors and Anderson-Darling Tests. Journal of Statistical Modeling and Analytics,
2(1), 21-33.

Rebala, G., Ravi, A., & Churiwala, S. (2019). An introduction to machine learning. Springer.
doi:10.1007/978-3-030-15729-6

Seier, E. (2002). Comparison of tests of univariate normality. InterStat Statistical Journal, 1, 1-
17.

Shapiro, S., Wilk, B., & Chen, J. (1968). Acomparison study. Journal of American, 63(324),
1343-1372.

Stephanie. (2015, August 6). Tukey Lambda Distribution: Definition. Retrieved May 9, 2020,
from Statistics How To: https://www.statisticshowto.com/tukey-lambda-distribution/

Tharwat, A. (2020). Classification assessment methods. Applied Computing and Informatics.
d0i:10.1016/j.aci.2018.08.003

Throde, C. (2002). Testing For Normality. Marcel Dekker.

Tukey lambda distribution. (2019, June 6). Retrieved May 9, 2020, from Wikipedia:
https://en.wikipedia.org/w/index.php?title=Tukey_lambda_distribution&oldid=90049154
4

Wainer, J. (2016). Comparison of 14 different families of classification.

Walck, C. (2007, September 10). Hand-book on statistical distributions for expirements.
University of Stockholms. Retrieved May 9, 2020, from
http://www stat.rice.edu/~dobelman/textfiles/DistributionsHandbook.pdf

Yap, W., & Sim, H. (2011). Comparison of various types of normality tests. Journal of
Statistical Computation and Simulation, 81(12), 2141-2155.
d0i:10.1080/00949655.2010.520163

69

Appendix 1: Code

Code snippet 1: Data generation

library("extraDistr") #rtlambda
library("truncnorm") #rtruncnorm
library("moments") #skewness and kurtosis

#"Generate samples"

set.seed (660)

population <- unique(as.integer(runif(n = 1000000, min = 5, max = 2000)))
sizes <- sort(sample(x= population, size = 200, replace = FALSE))
generate samples(sizes)

generate samples<-function(sizes) {

process_sample<-function(s, family, dist, alternative){

#Calc features
scaled s <- scale(s)

size <- length(scaled_s)

stats = calc_stats (s, scaled s)
#sample id
sample id <- paste(family, dist, size, sep = "-")

data set[nrow(data set) + 1,] = c(sample id, family, dist, stats,
alternative)

write(x = scaled s, file = paste(data files dir, "/", sample id,
" scaled", sep = ""), ncolumns = 1)

write(x = s, file = paste(data files dir, "/", sample id, sep = ""),
ncolumns = 1)

return(data_set)

}

data set <- data.frame(sample id=character(0), dist family=character(0),
dist=character(0), size=integer(0), mean=numeric(0), median=numeric(0),
mean median diff=numeric(0), sd=numeric(0), skewness=numeric(0),
kurtosis=numeric(0), outliers minor ratio=integer(0),
outliers extream ratio=integer(0), sigma 1 ratio=numeric(0),
sigma 2 ratio=numeric(0), sigma 3 ratio=numeric(0), alternative=integer(0),
stringsAsFactors = FALSE)

for(size in sizes){
print (paste("Processing samples of size ", size, sep = ""))

FH#EHFHHHFHHHHS Close to normal

family <- "close normal"

70

for(dist in dist ctn){
s <- create alternative sample(dist, size)
data set <- process_sample(s, family, dist, 1)

}

FHEHF#HHF#EHFHE Symmetric long-tailed
family <- "sym long tail"

for(dist in dist slt){
s <- create alternative sample(dist, size)
data set <- process_sample(s, family, dist, 1)

}

FHEHHHFFFEHHHFF Symmetric short-tailed

family <- "sym short tail"

for(dist in dist sst){
s <- create alternative sample(dist, size)
data set <- process sample(s, family, dist, 1)

}

FHEHFHHF S Asymmetric long-tailed
family <- "asym long tail"

for(dist in dist alt){
s <- create alternative sample(dist, size)
data set <- process sample(s, family, dist, 1)

}

FHEHFHH#EH#ESF Asymmetric short-tailed
family <- "asym short tail"

for(dist in dist ast){
s <- create alternative sample(dist, size)
data set <- process sample(s, family, dist, 1)

}

#HE#HHFEHHFES Normal

#To make sure we get in all runs the same means and sd

#I don't why the set.seed out the loop does not work here
set.seed(6606)

norm mean = as.integer(runif (5, -1000, 1000))

norm cov <- c(0.01, 0.1, 0.3, 0.6, 1.0) #coeffienent of variation
for(mu in norm mean) {
for(cov in norm cov) {
family <- paste("normal (", cov, ")", sep = "")

sd = round(abs (cov*mu), 3)

s <= rnorm(n = size, mean = mu, sd = sd)

71

data set <- process sample(s, family, paste("Normal", mu,

write.csv(data set, file=data file)

}
do_scaling <- TRUE

calc stats<-function(sample, scaled sample = NULL) {
if (do_scaling == TRUE) {
if (is.null(scaled sample)) {
s <- scale(sample)
}else{
s <- scaled sample
}
lelse{
s <- sample
}
#Calc features
size <- length(s)
mean <- round(mean(s), 5)
median_ <- round(median(s),5)
sd_ <- sd(s)
skewness <- round(skewness(s), 5)
kurtosis <- round(kurtosis(s), 5)
outliers <- find outliers(s)

sigma 1 ratio <- length(which(abs(s - mean) <= l*sd_))/size
sigma 2 ratio <- length(which(abs(s - mean) <= 2*sd_))/size
sigma 3 ratio <- length(which(abs(s - mean) <= 3*sd_))/size

outliers minor ratio <- length(outliers$minor) / size
outliers extream ratio <- length(outliers$extreme) / size

stats <= list("size" = size,
"mean" = mean ,
"median" = median_,
"mean median diff" = abs(mean_ - median) / sd ,
"sd" = sd_,
"skewness'" = skewness ,
"kurtosis" = kurtosis ,
"outliers minor ratio" = outliers minor ratio,
"outliers extream ratio" = outliers extream ratio,
"sigma 1 ratio" = sigma_ 1 ratio,
"sigma 2 ratio" = sigma_ 2 ratio,
"sigma 3 ratio" = sigma 3 ratio)
return(stats)

}

find outliers<-function(data) {
lowerg = quantile(data) [2]
upperq = quantile(data) [4]
igr = upperg - lowerqg #Or use IQR(data)

sd,

sep

72

minor threshold upper = (igr * 1.5) + upperqg
minor threshold lower = lowerqg - (igr * 1.5)

extreme threshold upper = (igr * 3) + upperq

extreme threshold lower = lowerqg - (igr * 3)
outliers = list()
outliers[["minor"]] = data[(data < minor threshold lower) | (data >

minor threshold upper)]
outliers[["extreme"]] = data[(data < extreme threshold lower)
extreme threshold upper)]

return (outliers)

}

create alternative sample<-function(dist, size) {
#Close to normal dist

if(dist == "tukey (0.1)"){
return(rtlambda(n = size, lambda = 0.1))
}
if(dist == "tukey(0.2)"){
return(rtlambda(n = size, lambda = 0.2))
}
if(dist == "tukey (5)"){
return(rtlambda(n = size, lambda = 5))
}
if(dist == "t (10)"){
return(rt(n = size, df = 10))
}
if(dist == "laplace(0,10)"){
return(rlaplace(n = size, mu = 0, sigma = 10))
}

#Sym Long Tail

if(dist == "t (1)"){ #Cachy
return(rt(n = size, df = 1))

}

if(dist == "t (2)"){
return(rt(n = size, df = 2))

}

if(dist == "t (4)"){
return(rt(n = size, df = 4))

}

if(dist == "t (7)"){
return(rt(n = size, df = 7))

}

if(dist == "tukey (10)"){
return(rtlambda(n = size, lambda = 10))

}

#Sym Short Tail
if(dist == "uniform(0,1)"){
return(runif(n = size, min = 0, max = 10))
}
if(dist == "beta(1.3,1.3)"){ #alpa=1.3, beta=1.3

(data >

73

return(rbeta(n = size, shapel = 1.3, shape2 = 1.3))

}

if(dist == "beta(l1.5,1.5)"){ #alpa=1.5, beta=1.5
return(rbeta(n = size, shapel = 1.5, shape2 = 1.5))

}

if(dist == "tukey (1.5)"){
return(rtlambda(n = size, lambda = 1.5))

}

if(dist == "truncatednormal (2,2)"){
return(rtruncnorm(n = size, mean = -2, sd = 2))

}

#Asym Long Tail

if(dist == "Weibull (0.5,1)"){ # shape = k
return(rweibull(n = size, shape = 0.5, scale = 1))
}
if(dist == "Weibull (2,1)"){ # shape = k
return(rweibull (n = size, shape = 2, scale = 1))
}
if(dist == "lognormal (0,1)"){
return(rlnorm(n = size, meanlog = 0, sdlog = 1))
}
if(dist == "chisquared (4 "){
return(rchisg(n = size, = 1))
}
if(dist == "chisquared (10)"){
return(rchisg(n = size, df = 10))
}
#Asym Short Tail
if(dist == "beta(2,1)"){ #alpa=2, beta=1
return(rbeta(n = size, shapel = 2, shape2 = 1))
}
if(dist == "beta(3,2)"){
return(rbeta(n = size, shapel = 3, shape2 = 2))
}
if(dist == "lognormal (0,0.15)"){
return(rlnorm(n = size, meanlog = 0, sdlog = 0.15))
}
if(dist == "lognormal (0,0.25)"){
return(rlnorm(n = size, meanlog = 0, sdlog = 0.25))
}
if(dist == "lognormal (0,0.35)"){
return(rlnorm(n = size, meanlog = 0, sdlog = 0.35))
}
stop(paste("Not handled dist:", dist, sep =" "))

dist ctn <- list("tukey(0.1)", "tukey(0.2)", "tukey(5)",
"laplace (0,10)")
dist slt <= ldist("t(1)", "t(2)", "t(4)", "t(7)", "tukey (1l

dist:sst <- list("uniform(0,1)", "beta(1.3,1.3)", "beta(l.

"tukey (1.5)", "truncatednormal (2,2)")

"t(lO) u,

O) ll)

5,1.

5)"[

74

dist _alt <- list("Weibull(0.5,1)",
"chisquared(4)", "chisquared (10)")
dist ast <- list("beta(2,1)", "beta(3,2)",
"lognormal (0,0.25)", "lognormal (0,0.35)")

"Weibull (2,1)",

dist alternatives = c(dist _ctn, dist slt, dist sst, dist alt,

"lognormal (0,1)",

"lognormal (0,0.15)",

dist_ast)

Code Snippet 2: Training Code

Define the control

trControl <- trainControl (method = "cv"
number = 10,
classProbs = TRUE,
savePredictions =
search = "grid",
allowParallel = TRUE)

”all”,

Run training

models <- caretList(dist type ~

size

median

skewness

kurtosis

sigma 1 ratio

sigma 2 ratio
+ sigma 3 ratio,

data = train data,

+ 4+ + + +

methodList = c("rf", "gbm", "svmRadial"),
metric = "Accuracy'",
tunelength = 10,

continue on fail = FALSE,
trControl = trControl)

Code Snippet 3: Models evaluation code

library("ggplot2™)
library ("pROC™)

library(dplyr)
predict score<-function (model, sample) {
x <= calc_stats(sample)
pred <- predict(model, type = "prob", newdata =

X)

75

return(pred$class_1)

}

get power threshold<-function(model, alpha) {
thr <- power thresholds df[power thresholds df$model==model$method &
power thresholds df$test set=="dev" , c(paste("th ", alpha, sep = ""))]
return (thr)

}
n _grid<-c(10, 30, 50, 100, 200, 500, 1000)
alph grid<-c(0.01, 0.05, 0.1)

test _grid<-c(model names, "SW", "KS","AD", "CvM", "Lillie", "SE", "JB")

#Function to caclulate the sensitivity, specificity, accuracy
calc_statistics<-function(actual classes, predictions){

df <- data.frame(threshold = numeric(0), tp = numeric(0), fp = numeric(0),

fn = numeric(0), tn = numeric(0), sensitivity = numeric(0), specificity =
numeric(0), accuracy = numeric(0), stringsAsFactors = FALSE)

#Create sequence of thresholds
thresholds<-seq(0.0,1,by=0.05)

for (threshold in thresholds) {
tp<=0
fp<-0
tn<-0
fn<-0
for(i in l:length(predictions)) {
pred<-predictions[i]
actual <- actual classes[i]
if(actual == "class 1"){
if (pred >= threshold) {

tp = tp + |
lelse{
fn = fn + 1
}
}else{
if (pred >= threshold){
fp = fp + |
}else{
tn = tn + 1
}
}
}
sensitivity<-ifelse (tp+fn==0,0, tp/ (tp+£fn))

specificity<-ifelse(tn+fp==0,0,tn/ (tn+fp))
accuracy<- (tp+tn)/ (tp+fp+tn+£fn)

df [nrow(df) + 1,] = c(threshold, tp, fp, fn, tn, sensitivity,
specificity, accuracy)

}
return (df)

76

calc power thresholds<-function(statistics)({
#Calculate thresholds for 0.1, 0.05, 0.01 alpha

alpha = fpr = 1 - Specificity => we search for Specificity 0.99, 0.95,
0.90
power = recall = sensitivity = tpr

thr 0.10 <- statistics[which.min (abs(0.90
c("threshold")]

thr 0.05 <- statistics[which.min(abs(0.95
c("threshold")]

thr 0.01 <- statistics[which.min(abs(0.99
c("threshold")]

statistics$specificity)),

statistics$specificity)),

statistics$specificity)),

thresholds <- list("th 0.1" = thr 0.10, "th 0.05" = thr 0.05, "th 0.01" =
thr 0.01)
return (thresholds)

}

run_test<-function(test set, test set name, model, applied threshold){
pred <- predict(model, newdata = test set, type = "prob")
pred$class <- apply(pred, MARGIN=1, FUN = function(x) ifelse(x["class 1"]
>= applied threshold, "class 1", "class 0"))
pred$class <- as.factor (pred$class)

matrix <-confusionMatrix(pred$class, test set$dist type, positive =
"class_1")
print (matrix)

Compute roc
test.roc <- roc(test set$dist type, predfclass 1)

stats <- calc_statistics(test set$dist type, pred$class 1)
stats$model <- model$method
stats$test set <- test set name

instance report df <- test set

instance report df$model <- model$method

instance report df$test set <- test set name

instance report df$actual <- instance report df$dist type

instance report df <- instance report df[, !(names(instance report df)
$in% c("dist type"))]

instance report df$predicted <- pred$class

instance report df$score <- pred$class 1

instance report df$threshold <- applied threshold

determine error type<-function (row) {
actual class <- row["actual"]
predicted class<-row["predicted"]

if (actual class == "class 1"){
if (predicted class == "class 1"){
return("TP")
}else{
return ("FN'")
}
lelse{
if (predicted class == "class 1"){
return ("FP")

77

}else{
return ("TN")

}
}

instance report df$type <- apply(instance report df, MARGIN=l, FUN =
function(x) determine error type(x))

return(list(stats=stats, roc_auc = test.roc$auc, instance report =
instance report df))

}

all summary df <- data.frame(model=character(0), test set=character(0),
threshold=numeric(0), roc_auc = numeric(0), sensitivity = numeric(0),
specificity = numeric(0), accuracy = numeric(0), stringsAsFactors = FALSE)

all statistics df <- data.frame(model=character(0), test set character (0)

threshold = numeric(0), tp = numeric(0), fp = numeric(0), fn = numeric(0),
tn = numeric(0), sensitivity = numeric(0), specificity = numeric(0),
accuracy = numeric(0), stringsAsFactors = FALSE)

##4##4# Test models

power thresholds df <- data.frame (model=character(0), test set =
character(0), "th 0.1" = numeric(0), "th 0.05" = numeric(0), "th 0.01" =
numeric(0), stringsAsFactors = FALSE)

power thresholds matrix <- matrix(ncol= 5,)

for(model in model list) {
model name <- model$method

print(paste("Calculating quality on model"”, model name, sep = " "))

#Retrieve best threshold based on dev set

predDev_prob <- predict(model, newdata = dev_set, type = "prob")
dev.roc <- roc(dev_set$dist type, predDev prob$class 1)
applied threshold <- coords(dev.roc, "best", ret = "threshold")$threshold

print(paste("Best threshold ", applied threshold))

#Calculate quality on dev, test, unseen data
sets <- list("dev'"=dev set, "test'"=test set, "unseen'"=unseen set)
for(set name in names (sets)) {
print(paste("Calculating quality on'", set name, "set", sep = " "))
set <-sets[[set name]]

#Run test and get back statistics
stats _and roc <- run test(set, set name, model, applied threshold)
all statistics_df <- rbind(all statistics_df, stats_and roc$stats)
instance_report <- stats_and_roc$instance_report
write.csv(x = instance report, file = paste(stats dir,

"/instance report-", model name, "-", set name, ".csv", sep = ""))

#Calculate thresholds on severals alpha

power thresholds<-calc power thresholds(stats and roc$stats)

power thresholds df <- rbind(power thresholds df, data.frame(model =
model name, test set=set name, "th 0.l1"=power thresholds$th 0.1,
"th 0.05"=power thresholds$th 0.05, "th 0.0l1"=power thresholds$th 0.01))

4

78

#Calculate quality on applied threshold

stat <- stats_and roc$stats[which.min (abs(applied threshold -
stats_and roc$stats$threshold)) ,]

all summary df <- rbind(all summary df, data.frame (model=model name,
test set=set name, threshold=applied threshold,
roc_auc=stats_and roc$roc auc, sensitivity=stat$sensitivity,
specificity=stat$specificity, accuracy=stat$accuracy))

}

}

dev_stats<- all statistics df[all statistics df$test set=="dev",]
ggplot(dev_stats, aes(specificity, sensitivity)) +

geom path(aes(color = model))+

scale x reverse(expand = c(0,0))+

scale_y continuous (expand = c(0,0))+

geom_abline(intercept = 1, slope = 1, linetype = "dashed")+
ggtitle(paste("ROC of dev set'")) +
theme bw ()

test stats<- all statistics df[all statistics df$test set=="test",]
ggplot (test stats, aes(specificity, sensitivity)) +

geom path(aes(color = model))+

scale x reverse(expand = c(0,0))+

scale_ y continuous (expand = c(0,0))+

geom abline(intercept = 1, slope = 1, linetype = "dashed")+
ggtitle(paste ("ROC of test set'")) +
theme bw ()

unseen_stats<- all statistics df[all statistics df$test set=="unseen",]
ggplot (unseen stats, aes(specificity, sensitivity)) +

geom path(aes(color = model))+

scale x reverse(expand = c(0,0))+

scale_y continuous (expand = c(0,0))+

geom abline(intercept = 1, slope = 1, linetype = "dashed")+
ggtitle(paste ("ROC of unseen data')) +
theme bw ()

print (power thresholds df)
print(all summary df)
print(all statistics_df)

ggplot (dev_stats, aes(threshold, accuracy)) +
geom path(aes(color = model))+
scale x reverse(expand = c(0,0))+
scale y continuous (expand = c(0,0))+
geom_abline(intercept = 1, slope = 1, linetype = "dashed")+
theme bw ()

write.csv(x = power thresholds df, file = power thresholds file)
write.csv(x all summary df, file = summary stats file)
write.csv(x = all statistics df, file = stats file)

79

Code Snippet 4: MonteCarlo simulation code

library (MonteCarlo)

library("nortest™) #AD, cvm, lillie #https://cran.r-
project.org/web/packages/nortest/nortest.pdf
library("extraDistr") #rtlambda

library("truncnorm") #rtruncnorm

library("tseries") #jarque.bera.test
library(parallel)

library (MASS)

test is alternative<-function(model, sample, alpha) {
pred <- predict score(model, sample)
thr <- get power threshold(model, alpha)
return (pred > thr)

}

normality test<-function(n, dist, test, alpha, family){
sample <- create alternative sample(dist = dist, size = n)
if(test == "SW"){ #Shapiro

test result <- shapiro.test(sample)
decision <- test result$p.value <= alpha
}else if (test == "KS") {#KS
test result <- ks.test(sample, "pnorm", mean=mean(sample), sd =
sd(sample))
decision <- test result$p.value <= alpha
lelse if (test == "AD"){ #Anderson Darling
test result <- ad.test(sample)
decision <- test result$p.value <= alpha
lelse if(test == "CVM") {#Cramer-von Mises Test
test result <- cvm.test(sample)
decision <- test result$p.value <= alpha
}else if(test == "Lillie"){ #Lilliefors
test result <- lillie.test(sample)
decision <- test result$p.value <= alpha
lelse if(test == "SKF"){ "Shapiro-Francia"
test result <- sf.test(sample)
decision <- test result$p.value <= alpha
lelse if (test == "JB"){ #Jarque-Bera
test result <- jarque.bera.test(sample)
decision <- test result$p.value <= alpha
}else if(test %in% model names){ #Proposed tests
decision = test is alternative(model list[[test]], sample, alpha)
}else {
stop(paste("normality test: Not handled test", test))
}

return result:
return(list ("power"=decision))

}

run_test<-function(family, dists){

NN

set.seed (100

dist grid<-dists
family grid <- list(family)

1

80

param list=list("n"=n grid, "dist"=dist grid, "test'=test grid,
"alpha'=alph grid, "family"=family grid)

system.time ({

MC result<-MonteCarlo(func=normality test, nrep=1000,
param_list=param list, ncpus =1, max grid = 5000)
saveRDS (MC_result, paste(power dir, "/",family, ".rds", sep = ""))

df<-MakeFrame (MC result)
write.csv(df, paste(power dir, "/",family,

3]

"

.csv'", sep = ""))

}

run_test("ctn", dist ctn)
run_test("alt", dist alt)
run_test("slt", dist slt)
run_test("ast", dist ast)
run_test("sst", dist sst)

81

size

median

1000 1500 2000

500

04 02 00 02 04

06

Appendix 2: Figures

size
T T
class_0 class_1
dist_type

Figure 30 Boxplot for size per dist_type

median

.
T

class_0 class_1

dist_type

Figure 31 Boxplot for median per dist_type

82

kurtosis

skewness

400 800 800 1000

200

30

20

10

-20 -10

=30

kurtosis

(T D

class_0 class_1

dist_type

Figure 32 Boxplot for kurtosis per dist_type

skewness

;

T T
class 0 class 1

dist_type

Figure 33 Boxplot for skewness per dist_type

83

sigma_1_ratio

2 ratio

sigma_

1.0

05 06 07 08

04

0.96 1.00
— 0o @oo{ FV o

0.92

0.88

sigma_1_ratio

class_0 class_1

dist_type

Figure 34 Boxplot for sigma_1_ratio per dist_type

sigma_2_ratio

=]

T
class 0 class 1

dist_type

Figure 35 Boxplot for sigma_2_ratio per dist_type

84

3 _ratio

sigma

1.00

0.98
o o oo O co}

0.96

0.94

sigma_3_ratio

class_0 class_1

dist_type

Figure 36 Boxplot for sigma_3_ratio per dist_type

85

Appendix 3: Tables

Table 18 Sample sizes

8 16 23 31 42 55 65 72 73

86 91 95 103 129 151 173 178 185
194 212 214 215 219 246 247 257 265
266 272 282 284 292 298 306 310 317
330 332 338 339 360 376 382 390 394
406 409 428 436 445 464 480 503 504
525 543 549 552 563 568 578 580 591
593 602 631 634 654 657 659 664 679
693 702 718 723 744 761 762 773 775
788 790 811 825 844 859 902 906 917
920 933 937 943 954 959 962 963 981
1005 1009 1010 1016 1023 1024 1028 1045 1047
1060 1064 1077 1081 1087 1099 1106 1113 1135
1137 1138 1157 1174 1216 1230 1231 1242 1243
1244 1254 1256 1263 1265 1269 1275 1279 1297
1302 1317 1323 1358 1361 1369 1376 1398 1404
1405 1420 1440 1444 1445 1460 1470 1489 1512
1525 1536 1565 1594 1599 1613 1621 1625 1688
1697 1698 1703 1721 1724 1730 1738 1746 1773
1783 1800 1811 1815 1833 1841 1845 1847 1867
1870 1881 1892 1895 1901 1904 1907 1908 1910
1914 1924 1929 1933 1942 1955 1959 1960 1987
1995 1998

86

Table 19: FN instances with the lowest score from the validation set on rf model

truncatednormal

sym_short tail | (2,2) 1895 | 0.009 | 0.008 | 2.982 | 0.678 | 0.955 | 0.998 | 0.014
truncatednormal

sym_short_tail | (2,2) 1724 | -0.004 | 0.025 | 2.958 | 0.684 | 0.955 | 0.997 | 0.026
truncatednormal

sym_short_tail | (2,2) 1892 | 0.018 | -0.002 | 3.010 | 0.683 | 0.954 | 0.996 | 0.028
truncatednormal

sym_short_tail | (2,2) 844 | -0.014 | 0.068 | 2.914 | 0.692 | 0.953 | 0.999 | 0.032
truncatednormal

sym_short_tail | (2,2) 1243 | -0.010 | 0.061 | 2.990 | 0.683 | 0.957 | 0.998 | 0.032
truncatednormal

sym_short tail | (2,2) 543 | 0.008 | -0.117 | 3.080 | 0.680 | 0.948 | 0.998 | 0.034
truncatednormal

sym_short_tail | (2,2) 552 | 0.000 | -0.042 | 2.853 | 0.672 | 0.951 | 1.000 | 0.038
truncatednormal

sym_short_tail | (2,2) 1525 | 0.019 | -0.078 | 2.971 | 0.679 | 0.950 | 0.997 | 0.042
truncatednormal

sym_short_tail | (2,2) 1621 | 0.011 | -0.050 | 2.995 | 0.682 | 0.958 | 0.998 | 0.042
truncatednormal

sym_short tail | (2,2) 1077 | 0.032 | -0.080 | 3.011 | 0.685 | 0.948 | 0.998 | 0.048
truncatednormal

sym_short_tail | (2,2) 1995 | 0.010 | -0.024 | 2.960 | 0.695 | 0.951 | 0.999 | 0.05
truncatednormal

sym_short tail | (2,2) 679 | 0.017 | 0.075 | 3.199 | 0.700 | 0.951 | 0.996 | 0.052
truncatednormal

sym_short_tail | (2,2) 1323 | -0.007 | -0.115 | 3.091 | 0.683 | 0.953 | 0.996 | 0.052
truncatednormal

sym_short tail | (2,2) 654 | -0.009 | -0.038 | 2.948 | 0.680 | 0.951 | 1.000 | 0.054

close_normal | tukey(0.2) 409 | 0.054 | -0.145 | 2.914 | 0.675 | 0.963 | 0.998 | 0.058

close_normal | tukey(0.2) 811 | -0.012 | 0.030 | 3.022 | 0.692 | 0.956 | 0.998 | 0.064
truncatednormal

sym_short_tail | (2,2) 1698 | -0.013 | 0.078 | 2.975 | 0.674 | 0.953 | 0.998 | 0.068
truncatednormal

sym_short_tail | (2,2) 1064 | 0.025| 0.001 | 3.054 | 0.685 | 0.949 | 0.997 | 0.074
truncatednormal

sym_short_tail | (2,2) 360 | -0.059 | 0.014 | 3.041 | 0.681 | 0.953 | 0.997 | 0.082
truncatednormal

sym_short_tail | (2,2) 659 | 0.020 | 0.035 | 2.889 | 0.684 | 0.959 | 0.998 | 0.084

87

Table 20: Overall tests power on 1% significance level

10 0.39 0.11 0.11 0.11 0.05 0 0.09 0.11
30 0.5 0.26 0.25 0.24 0.22 0.06 0.21 0.26
50 0.59 0.38 0.34 0.32 0.29 0.12 0.27 0.35
100 0.71 0.6 0.53 0.48 0.41 0.18 0.38 0.54
200 0.79 0.76 0.71 0.67 0.67 0.23 0.57 0.74
500 0.86 0.85 0.83 0.81 0.82 0.44 0.77 0.85
1000 0.89 0.88 0.86 0.86 0.84 0.67 0.83 0.88
Table 21: Overall tests power on 5% significance level
10 0.78 0.19 0.19 0.19 0.08 0.02 0.17 0.2
30 0.73 0.39 0.37 0.34 0.26 0.11 0.3 0.36
50 0.76 0.53 0.48 0.45 0.35 0.17 0.38 0.48
100 0.83 0.71 0.66 0.62 0.55 0.22 0.53 0.67
200 0.87 0.82 0.79 0.76 0.77 0.32 0.7 0.81
500 0.89 0.87 0.86 0.85 0.84 0.6 0.83 0.87
1000 0.91 0.9 0.88 0.88 0.86 0.77 0.86 0.89
Table 22: Overall tests power on 10% significance level
10 0.91 0.26 0.27 0.26 0.1 0.03 0.24 0.27
30 0.86 0.48 0.46 0.43 0.3 0.14 0.38 0.45
50 0.86 0.61 0.56 0.52 0.4 0.2 0.46 0.57
100 0.89 0.76 0.72 0.69 0.65 0.26 0.62 0.74
200 0.9 0.84 0.82 0.8 0.8 0.41 0.76 0.84
500 0.91 0.89 0.87 0.87 0.85 0.69 0.85 0.89
1000 0.92 0.91 0.9 0.89 0.88 0.8 0.88 0.91
Table 23: Tests power per distribution at 1% significance level

laplace(0,10) 10.00 0.32 | 0.05| 0.07 0.06 0.02 | 0.00 | 0.05 | 0.07

30.00 055 | 0.19 | 0.18 0.20 0.27 | 0.00 | 0.15| 0.25

50.00 0.68 | 0.35 | 0.35 0.33 0.38 | 0.00 | 0.22 | 0.39

100.00 0.88 | 0.66 | 0.66 0.67 0.68 | 0.01 | 0.46 | 0.68

200.00 098 | 0.92 | 0.95 0.93 0.93 | 0.08 | 0.84 | 0.94

88

500.00 1.00 | 1.00 | 1.00 1.00 | 1.00| 0.68 | 1.00 | 1.00

1000.00 1.00 | 1.00 | 1.00 1.00| 1.00] 1.00 | 1.00| 1.00

t(10) 10.00 0.28 | 0.01 | 0.02 0.02| 0.01)000) 0.01] 0.02
30.00 0.29 | 0.06 | 0.03 0.03| 0.09 | 0.00 | 0.02 | 0.07

50.00 034 0.08| 004 0.04| 0.14) 000) 0.02 | 0.07

100.00 0.44 | 0.14 | 0.06 0.06 | 0.21)| 0.00| 0.03| 0.16

200.00 058 | 020 | 0.11 0.08| 0.32| 0.00| 0.04] 0.28

500.00 0.80 | 047 | 0.27 019| 064) 0.00| 0.0] 054

1000.00 0.88] 0.79 | 0.57 0.46| 0.89 | 0.00| 0.22 | 0.84

tukey(0.1) 10.00 0.29 | 0.02| 0.01 0.01] 0.00| 0.00 | 0.01] 0.01
30.00 0.20 | 0.02 | 0.02 0.01] 0.02| 0.00 | 0.02] 0.02

50.00 019] 0.01 | 0.01 0.01| 0.04) 000)| 0.02] 0.02

100.00 0.22 | 0.02 | 0.02 001] 0.04] 0.00| 0.01] 0.04

200.00 0.22 | 0.03 | 0.02 0.01| 0.06 | 0.00| 0.02| 0.02

500.00 020 | 0.04| 0.04| 0.02| 0.10] 0.00| 0.02 | 0.06

1000.00 011 0.08| 0.04| 0.04| 0.12| 0.00| 0.03] 0.07

tukey(0.2) 10.00 0.27 | 0.01 | 0.00 0.00| 0.00| 0.00 | 0.01] 0.01
30.00 0.14 | 0.00 | 0.01 0.01| 0.00] 0.00| 0.00 | 0.00

50.00 0.08 | 0.01 | 0.01 0.01| 0.00| 0.00 | 0.00| 0.00

100.00 0.06 | 0.00 | 0.01 0.01| 0.00] 0.00| 0.00 | 0.00

200.00 0.04 | 0.01 | 0.01 0.01| 0.00| 0.00| 0.01] 0.00

500.00 0.04 | 0.03 | 0.03 0.03| 0.00| 0.00| 0.01] 0.01

1000.00 0.46 | 0.11 | 0.06 0.04| 0.05)| 0.00] 0.02] 0.03

tukey(5) 10.00 0.27 | 0.08 | 0.02 0.03| 0.00)| 000] 0.01] 0.02
30.00 011] 001)| 0.04| 0.06| 0.01] 0.00| 0.04 | 0.02

50.00 0.06 | 0.02 | 0.08 0.12 | 0.00| 0.00 | 0.06 | 0.01

100.00 0.05] 012 | 0.27 0.29 | 0.00| 0.00 | 0.22] 0.06

200.00 0.23] 053 | 0.69 0.69| 0.00] 0.00| 052] 0.32

500.00 0.66 | 1.00 | 1.00 1.00| 0.00| 021 | 0.97 | 0.99

1000.00 0.85] 1.00 | 1.00 1.00| 0.00| 0.87] 1.00| 1.00

Average CTN 10.00 0.29 | 0.02 | 0.02 0.02| 0.01] 0.00| 0.02] 0.03
30.00 0.26 | 0.06 | 0.06 0.06 | 0.08 | 0.00 | 0.05]| 0.07

50.00 0.27 | 0.09 | 0.10 0.10| 0.11) 0.00 | 0.06 | 0.10

100.00 0.33] 019 | 0.20 021] 0.19| 0.00| 0.14] 0.19

200.00 041] 034 | 0.36 034| 026 002] 0.29] 031

89

500.00 054 | 051 | 047 045] 035|018 | 042] 052

1000.00 0.66 | 0.60 | 0.53 051| 041) 037| 045 0.59

chisquared(10) 10.00 037 004 | 004| 003] 0.01)] 0.00| 0.08] 0.04
30.00 050] 019 014| 011 | 0.14] 0.00| 0.08 | 0.17

50.00 0.69 | 038 | 0.25 020| 0.29) 0.00] 0.15] 0.32

100.00 093] 0.78 | 0.60 050| 0.61) 0.00) 0.35]| 0.73

200.00 100 | 099 | 094 | 088 095| 0.03| 0.71 | 0.98

500.00 1.00 | 1.00 | 1.00 1.00| 1.00| 051 | 1.00| 1.00

1000.00 1.00 | 1.00 | 1.00 1.00 | 1.00| 0.98 | 1.00| 1.00

chisquared(4) 10.00 0.47 | 010 | 0.09 0.07| 0.03| 0.00| 0.05] 0.10
30.00 065] 052 | 044| 037 | 035] 0.00| 0.25]| 0.46

50.00 090) 083 | 0.74| 0.66| 0.62)| 0.01| 0.44 | 0.78

100.00 1.00 | 1.00 | 0.99 096 | 0.95] 0.07| 0.83] 1.00

200.00 1.00 | 1.00 | 1.00 1.00| 1.00| 050 | 0.99 | 1.00

500.00 1.00 | 1.00 | 1.00 1.00| 1.00| 1.00 | 1.00| 1.00

1000.00 1.00 | 1.00 | 1.00 1.00| 1.00] 1.00| 1.00| 1.00

lognormal(0,1) 10.00 0.61 | 043 | 0.38 037] 0.19] 0.00| 0.30| 0.38
30.00 092] 097 | 0.95 094| 081 014] 0.81] 095

50.00 099] 1.00| 1.00 1.00| 098 | 050 | 0.98 | 1.00

100.00 1.00 | 1.00 | 1.00 1.00| 1.00| 095| 1.00| 1.00

200.00 1.00 | 1.00 | 1.00 1.00| 1.00| 1.00 | 1.00| 1.00

500.00 1.00 | 1.00 | 1.00 1.00| 1.00 | 1.00 | 1.00 | 1.00

1000.00 1.00 | 1.00 | 1.00 1.00| 1.00] 1.00| 1.00| 1.00

Weibull(0.5,1) 10.00 070 078 | 0.74| 0.69| 033)| 0.00| 0.56 | 0.69
30.00 098] 1.00 | 1.00 1.00| 097 | 060 | 1.00| 1.00

50.00 1.00 | 1.00 | 1.00 1.00| 1.00| 098 | 1.00 | 1.00

100.00 1.00 | 1.00 | 1.00 1.00| 1.00] 1.00| 1.00| 1.00

200.00 1.00 | 1.00 | 1.00 1.00| 1.00| 1.00| 1.00| 1.00

500.00 1.00 | 1.00 | 1.00 1.00| 1.00] 1.00| 1.00| 1.00

1000.00 1.00 | 1.00 | 1.00 1.00| 1.00| 1.00 | 1.00 | 1.00

Weibull(2,1) 10.00 0.34 | 0.02 | 0.02 0.01] 0.00| 0.00 | 0.02 | 0.02
30.00 0.39 | 0.07 | 0.07 0.05| 0.06| 0.00 | 0.04| 0.08

50.00 052] 016 | 0.11 0.10| 0.11) 0.00| 0.06 | 0.15

100.00 0.84 | 057 | 031 026 | 0.28| 0.00| 0.17] 0.43

200.00 095] 095 | 0.78 0.65| 0.70] 0.01] 0.43 | 0.90

90

500.00 1.00 | 1.00 | 1.00 099 | 1.00] 014 | 0.92] 1.00

1000.00 1.00 | 1.00 | 1.00 1.00| 100|071] 1.00| 1.00

Average ALT 10.00 050 | 0.27 | 0.25 023| 011) 0.00] 0.19] 0.25
30.00 0.69 | 055 | 0.52 049 | 047] 015| 0.44] 0583

50.00 0.82 | 0.67 | 0.62 059 | 0.60) 030] 053] 0.65

100.00 095 087 | 0.78 0.74| 0.77 | 040 | 0.67 | 0.83

200.00 099 099 094| 091 | 093] 051 | 0.83 | 0.98

500.00 1.00 | 1.00 | 1.00 1.00| 1.00| 0.73] 0.98 | 1.00

1000.00 1.00 | 1.00 | 1.00 1.00 | 1.00| 0.94| 1.00| 1.00

beta(2,1) 10.00 0.30 | 0.02 | 0.03 0.03| 0.00| 0.00 | 0.03 | 0.08
30.00 0.26 | 0.22 | 0.18 0.16 | 0.02| 0.00 | 0.09 | 0.12

50.00 028] 052 044| 034| 0.03] 0.00| 0.20 | 0.34

100.00 044] 098 | 0.91 0.78 | 0.17 | 0.00 | 0.56 | 0.90

200.00 0.67 | 1.00 | 1.00 099] 099|011 0.96 | 1.00

500.00 0.87] 1.00 | 1.00 1.00 | 1.00)| 0.95| 1.00| 1.00

1000.00 1.00 | 1.00 | 1.00 1.00| 1.00] 1.00| 1.00| 1.00

beta(3,2) 10.00 029 | 0.01 | 0.01 0.01] 0.00| 0.00| 0.01] 0.01
30.00 0.21 | 0.02 | 0.02 0.02| 0.00)| 0.00] 0.02] 0.01

50.00 0.21 | 0.04 | 0.05 0.03| 0.00| 0.00 | 0.02 | 0.02

100.00 0.39 | 020 | 0.16 0.12| 0.00| 0.00| 0.08 | 0.08

200.00 065] 073| 054| 037| 0.10] 0.00| 0.22] 0.51

500.00 094] 1.00 | 0.99 095| 1.00] 0.02| 0.73 | 1.00

1000.00 1.00 | 1.00 | 1.00 1.00| 1.00| 029 | 0.99 | 1.00

lognormal(0,0.15) 10.00 0.30 | 0.02 | 0.02 0.01| 0.00) 0.00] 0.02] 0.01
30.00 031] 004 0.04| 0.04| 0.06| 0.00| 0.02 | 0.04

50.00 0.36 | 010 | 0.05 0.05| 0.09)| 0.00| 0.03] 0.08

100.00 059] 019 0.12 0.08| 0.18 | 0.00| 0.07 | 0.18

200.00 0.71] 039 | 0.25 020 036 | 0.00| 0.17] 0.38

500.00 0.90 | 0.87 | 0.73 0.65| 085 0.01| 0.46 | 0.88

1000.00 097] 1.00| 0.98 096 | 1.00| 0.08 | 0.83 | 0.99

lognormal(0,0.25) 10.00 037] 002 0.04| 0.03| 0.01] 0.00| 0.02| 0.04
30.00 0.46 | 013 | 0.10 0.07| 014 | 0.00| 0.06 | 0.12

50.00 059] 025 | 0.19 014 | 021 0.00| 0.09] 0.27

100.00 0.84 | 055 | 042 036 | 044 | 0.00| 0.23] 0.48

200.00 097] 090 | 0.78 0.69| 085 001| 047 0.88

91

500.00 1.00 | 1.00 | 1.00 099 | 1.00] 022 | 0.95] 1.00

1000.00 1.00 | 1.00 | 1.00 1.00| 1.00| 0.82 | 1.00 | 1.00

lognormal(0,0.35) 10.00 0.38 | 0.06 | 0.05 0.04| 0.02) 0.00] 0.03] 0.05
30.00 057 | 025 | 0.17 016 | 0.24| 0.00 | 0.12] 0.27

50.00 0.78 | 047 | 0.38 030 041) 0.00] 0.22 | 0.48

100.00 097] 087 | 0.75 0.67| 0.77] 0.01]| 0.48 | 0.80

200.00 1.00 | 1.00 | 0.99 096 | 0.99] 0.09| 0.87] 1.00

500.00 1.00 | 1.00 | 1.00 1.00| 1.00| 0.78 | 1.00 | 1.00

1000.00 1.00 | 1.00 | 1.00 1.00| 1.00| 1.00 | 1.00 | 1.00

Average AST 10.00 0.33 | 0.03 | 0.03 0.02| 0.01] 0.00| 0.02] 0.03
30.00 0.36 | 013 | 0.10 0.09| 0.09]| 0.00| 0.06 | 0.11

50.00 0.44 | 028 | 0.22 0.17| 0.15) 0.00| 011] 0.24

100.00 0.65 | 056 | 047 040| 0.31] 0.00| 0.28 | 0.49

200.00 0.80 | 0.80 | 0.71 0.64| 066 | 0.04]| 054 0.75

500.00 094] 097 094| 092| 097 040 | 0.83 | 0.98

1000.00 099 | 1.00| 1.00 099 | 1.00]| 0.64| 0.96 | 1.00

t(1) 10.00 0.67 | 044 | 0.50 047 | 036 | 0.03| 0.43] 0.48
30.00 098 | 094 | 0.93 0.94| 090 055| 0.89] 0.95

50.00 1.00 | 0.99 | 1.00 1.00| 099 | 083] 0.99 | 1.00

100.00 1.00 | 1.00 | 1.00 1.00| 1.00| 099 | 1.00| 1.00

200.00 1.00 | 1.00 | 1.00 1.00| 1.00| 1.00 | 1.00| 1.00

500.00 1.00 | 1.00 | 1.00 1.00| 1.00 | 1.00 | 1.00 | 1.00

1000.00 1.00 | 1.00 | 1.00 1.00| 1.00] 1.00| 1.00| 1.00

t(2) 10.00 045] 017 0.19 020 012) 000] 017] 0.21
30.00 0.79 | 058 | 057 054| 0.61] 0.09| 043 0.60

50.00 092 | 0.78 | 0.76 0.75| 081 021| 0.65]| 0.83

100.00 099 | 097 | 0.96 095| 097 049| 091 0.97

200.00 1.00 | 1.00 | 1.00 1.00| 100 0.88 | 1.00| 1.00

500.00 1.00 | 1.00 | 1.00 1.00| 1.00] 1.00| 1.00| 1.00

1000.00 1.00 | 1.00 | 1.00 1.00| 1.00| 1.00 | 1.00 | 1.00

t(4) 10.00 0.33] 0.06| 0.04| 0.05| 0.03] 0.00| 0.06 | 0.07
30.00 051] 020 | 0.15 0.14| 0.26| 0.00| 0.10 | 0.24

50.00 064) 034 | 024| 024| 041 002| 0.17] 0.37

100.00 0.86 | 057 | 049 045| 0.69] 0.02| 0.32] 0.64

200.00 097 | 086 | 0.80 0.72| 092)| 0.08| 058 0.88

92

500.00 1.00 | 1.00 | 1.00| 099 | 1.00| 0.36| 0.94 | 1.00
1000.00 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.85 | 1.00 | 1.00

t(7) 10.00 030 | 0.03| 0.03| 002| 001]| 000| 002 0.03
30.00 0.33] 0.08| 007| 004| 012| 0.00| 004 | 0.11

50.00 044 | 013 | 008 | 007| 019| 0.00| 004 | 0.16

100.00 058 | 0.23| 0.15| 0.10| 034| 0.00| 0.08 | 0.27

200.00 078 | 044 | 025| 022| 053] 000 | 0.12| 0.48

500.00 096 | 0.81 | 062 | 053| 088 | 0.00| 0.30| 0.84

1000.00 1.00 | 097 | 094 | 089| 099 | 0.02| 0.65| 0.99

tukey(10) 10.00 048 | 0.36 | 0.42| 046| 014| 000| 041 | 0.36
30.00 080 | 0.81 | 095| 097| 040 0.13| 0.91 | 0.85

50.00 093] 098 | 1.00| 1.00| 060| 0.50| 0.99 | 0.98

100.00 0.99 | 1.00 | 1.00| 1.00| 0.88 | 0.99 | 1.00| 1.00

200.00 1.00 | .00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

500.00 1.00 | 1.00 | 1.00 | 1.00| 1.00 | 1.00 | 1.00 | 1.00

1000.00 1.00 | .00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

Average SLT 10.00 045| 021 | 024 | 024| 013] 001| 022 0.23
30.00 068 | 052 | 053| 053| 046| 0.15| 047 | 0.55

50.00 079 | 064 | 062 | 061| 060 031 | 057 | 067

100.00 088 0.75| 0.72| 0.70| 0.78| 0.50 | 0.66 | 0.78

200.00 095| 0.86| 0.81| 079| 089 | 059 | 0.74 | 0.87

500.00 099 | 096| 092 | 090| 098] 0.67| 0.85| 0.97

1000.00 1.00| 099 | 0.99 | 098 | 1.00| 0.77 | 0.93| 1.00

beta(1.3,1.3) 10.00 0.36 | 0.00 | 0.00| 001| 000 | 0.00| 0.01]| 0.00
30.00 056 | 0.03| 0.04| 002| 000/ 0.00| 002 0.01

50.00 069 | 012 | 012| 010| 000| 0.00| 0.04 | 0.02

100.00 0.88 | 0.69 | 0.46| 026| 000| 0.00| 0.12 | 0.32

200.00 0.99 | 1.00 | 093 | 078 | 068 | 0.00| 0.41 | 0.97

500.00 1.00 | 1.00 | 1.00| 1.00| 1.00 | 0.05| 0.97 | 1.00

1000.00 1.00 | 1.00 | 1.00 | 1.00| 1.00 | 0.77 | 1.00 | 1.00

beta(1.5,1.5) 10.00 038 | 0.01| 001 | 001| 000/ 000| 001 0.01
30.00 0.46 | 0.02 | 0.03| 003 | 000 | 0.00| 0.01| 0.00

50.00 057 | 0.06 | 0.06| 004| 000]| 0.00| 003 0.01

100.00 079 | 0.44| 027 | 018| 000 0.00| 0.07 | 0.18

200.00 0.96 | 0.98 | 0.79| 056| 0.36| 0.00| 026 0.85

93

500.00 1.00 | 1.00 | 1.00 1.00| 1.00| 0.02| 0.86 | 1.00

1000.00 1.00 | 1.00 | 1.00 1.00| 1.00| 045| 1.00| 1.00

truncatednormal(2,2) 10.00 0.30 | 0.01 | 0.01 0.01| 0.00| 0.00| 0.01] 0.01
30.00 0.18| 0.01] 001| 0.01| 0.02| 0.00| 0.01| 0.01

50.00 014] 001 | 0.01| 0.01| 0.02] 0.00| 0.01]| 0.01

100.00 014] 001 | 0.01| 0.01| 0.02] 0.00| 0.01] 0.01

200.00 010 001] 001| 0.01| 0.01| 0.00| 0.01| 0.01

500.00 0.05] 001 0.010| 0.02| 0.02] 0.00| 0.01] 0.01

1000.00 004 001] 001| 0.01| 0.01| 0.00| 0.00| 0.01

tukey(1.5) 10.00 0.42] 001] 001| 0.02| 0.00| 0.00| 0.01| 0.01
30.00 0.75] 0.14] 010| 0.09| 0.00| 0.00| 0.04| 0.03

50.00 090 | 046 | 0.36| 0.23| 0.00| 0.00| 0.10 | 0.21

100.00 1.00| 099 | 0.88| 0.70| 0.01| 0.00| 0.35| 0.88

200.00 1.00 | 1.00 | 1.00| 0.98| 099 | 0.02 | 0.85| 1.00

500.00 1.00 | 1.00 | 1.00 1.00| 1.00| 066 | 1.00 | 1.00

1000.00 1.00 | 1.00 | 1.00 1.00| 1.00| 1.00| 1.00| 1.00

uniform(0,1) 10.00 0.42] 0.02] 0.01| 0.02| 0.00| 0.00| 0.01]| 0.00
30.00 069 | 0.09| 0.08| 0.07| 0.00| 0.00| 0.04 | 0.03

50.00 087 036| 027 | 0.16| 0.00| 0.00| 0.09| 0.12

100.00 099 | 093 | 0.80| 059| 0.00| 0.00| 0.24 | 0.75

200.00 1.00| 1.00| 1.00| 0.97| 097] 0.01| 0.75| 1.00

500.00 1.00 | 1.00 | 1.00 1.00| 1.00| 044 | 1.00]| 1.00

1000.00 1.00 | 1.00 | 1.00 1.00| 1.00| 1.00| 1.00| 1.00

Average SST 10.00 038 001 0.01| 0.01| 0.00| 0.00| 0.01]| 0.01
30.00 053] 0.06| 005| 0.04| 0.00| 0.00| 0.02| 0.02

50.00 063] 020 | 0.16| 0.11| 0.00 | 0.00| 0.05| 0.07

100.00 076 | 061 | 048] 035| 0.01] 0.00| 0.16 | 0.43

200.00 081 080| 075| 066| 060| 0.01| 0.46 | 0.77

500.00 0.81] 080 | 0.80| 080 | 0.80]| 0.23| 0.77 | 0.80

1000.00 081 080| 080 0.80| 080 0.64| 0.80| 0.80

94

Table 24: Tests power per distribution at 5% significance level

laplace(0,10) 10 0.68 0.16 | 0.18 | 0.16 | 0.06 | 0.00 | 0.13 | 0.17
30 0.69 035 037] 036 | 036 | 0.02 | 0.28 | 0.43

50 0.80 0.51 | 053 | 050 052 | 0.02| 045 0.59

100 0.94 080 083] 081 0.79] 0.09| 0.71 | 0.86

200 1.00 097 099 | 098] 097 | 0.33| 0.94 | 0.99

500 1.00 1.00| 1.00| 1.00| 1.00| 095 | 1.00| 1.00

1000 1.00 1.00| 1.00| 100]| 1.00 | 1.00| 1.00 | 1.00

t(10) 10 0.73 0.06 | 0.08] 0.06 | 0.02| 0.00| 0.07] 0.10
30 0.51 0.12] 009 | 0.09| 013 | 0.00 | 0.09 | 0.15

50 0.49 014 011] 012 0.17 | 0.00 | 0.08 | 0.20

100 0.63 024 015| 013 | 0.30| 0.00 | 0.10| 0.28

200 0.76 036 | 0.24| 021 | 046 | 0.00 | 0.16 | 0.42

500 0.87 0.64| 048 | 042 | 0.75] 0.00 | 0.29 | 0.73

1000 0.92 090 0.76 | 0.69 | 0.95| 0.03| 0.51 | 0.91

tukey(0.1) 10 0.69 0.06 | 0.06 | 0.06| 0.01 | 0.00 | 0.05| 0.07
30 0.46 0.07| 0.06 | 0.06 | 0.06 | 0.00| 0.06 | 0.07

50 0.43 0.07| 0.05] 0.05| 0.06 | 0.00 | 0.05]| 0.08

100 0.44 0.10 | 0.07| 0.07 | 0.10| 0.00 | 0.05| 0.09

200 0.43 0.09| 0.08] 0.07| 012] 0.00| 0.06 | 0.11

500 0.34 011] 012 | 010 0.16 | 0.00 | 0.08 | 0.16

1000 0.23 0.18] 0.15| 0.12 | 0.25| 0.00 | 0.11 | 0.24

tukey(0.2) 10 0.70 0.05]| 0.05| 0.04| 0.01 | 0.00 | 0.04| 0.05
30 0.44 0.03| 0.05] 0.05| 0.00| 0.00| 0.04 | 0.03

50 0.30 0.05| 004 | 005| 0.01 | 0.00 | 0.04| 0.03

100 0.30 0.04| 0.05] 0.05| 0.00| 0.00| 0.06 | 0.02

200 0.26 0.05| 0.06 | 0.04| 0.01 | 0.00 | 0.05]| 0.02

500 0.28 011) 0.09] 0.09 | 0.07| 0.00 | 0.07 | 0.05

1000 0.65 029 020] 017 0.27| 0.00 | 0.11] 0.17

tukey(5) 10 0.66 0.06 | 0.09| 0.10| 0.02 | 0.00 | 0.10| 0.09
30 0.40 0.07] 015| 0.7 0.02 | 0.00 | 0.13 | 0.07

50 0.34 013 024 | 027 0.01] 0.00 | 0.23] 0.11

100 0.37 0.36 | 0.53| 056 | 0.00| 0.01 | 0.43 | 0.26

200 0.53 0.89 | 0.88| 0.86| 0.00 | 0.08 | 0.77 | 0.74

500 0.77 1.00| 1.00| 1.00| 0.00| 0.61 | 1.00| 1.00

1000 0.96 1.00| 1.00| 1.00| 0.00| 099 | 1.00| 1.00

95

Average CTN 10 0.69 0.08| 009 | 0.08| 0.02| 0.00| 0.08 | 0.10
30 0.50 013 014 | 015 011 | 0.00 | 0.2 0.15

50 0.47 018 019] 0.20| 0.15] 0.00 | 0.17 | 0.20

100 0.54 031] 033| 032 024 | 0.02| 0.27 | 0.30

200 0.60 047 045] 043 | 031] 0.08 | 0.40| 0.46

500 0.65 057)| 054 | 052 | 040 | 031 | 0.49 | 0.59

1000 0.75 0.67 | 062 | 0.60| 049 | 040 | 0.55| 0.66

chisquared(10) 10 0.82 0.12] 010| 0.10| 0.04 | 0.00 | 0.08 | 0.11
30 0.80 036 | 033] 0.28| 0.24 | 0.00 | 0.20| 0.32

50 0.88 0.56 | 047 | 040 | 044 | 0.02 | 0.33| 0.57

100 0.99 090| 080 | 0.73| 0.80| 0.06 | 0.61 | 0.88

200 1.00 1.00| 0.99 | 0.96| 099 | 0.20 | 0.89 | 1.00

500 1.00 1.00| 1.00| 1.00| 1.00 | 0.86 | 1.00| 1.00

1000 1.00 1.00| 1.00| 100]| 1.00 | 1.00| 1.00 | 1.00

chisquared(4) 10 0.87 022 022] 023 0.07] 0.00| 0.16 | 0.25
30 0.94 0.76 | 0.67 | 059 | 048 | 0.02 | 0.49 | 0.68

50 0.97 096 | 090 | 083 | 0.75| 0.08 | 0.71 | 0.92

100 1.00 1.00 | 1.00| 0.99 | 099 | 0.36 | 0.96 | 1.00

200 1.00 1.00| 1.00| 1.00| 1.00 | 0.87 | 1.00] 1.00

500 1.00 1.00| 100 100]| 1.00 | 1.00| 1.00 | 1.00

1000 1.00 1.00| 1.00| 1.00| 1.00| 1.00 | 1.00 | 1.00

lognormal(0,1) 10 0.91 059 | 058] 054 | 0.27 | 0.03 | 0.47] 0.59
30 1.00 099 | 097 | 098] 092 | 041 | 0.93| 0.99

50 1.00 1.00| 1.00| 1.00| 099 | 0.80 | 0.99 | 1.00

100 1.00 1.00| 1.00| 1.00| 1.00| 1.00 | 1.00 | 1.00

200 1.00 1.00| 100 100| 1.00 | 1.00| 1.00 | 1.00

500 1.00 1.00| 100| 100| 1.00 | 1.00| 1.00 | 1.00

1000 1.00 1.00| 1.00| 1.00| 1.00| 1.00 | 1.00 | 1.00

Weibull(0.5,1) 10 0.96 089 | 086 | 086 | 044 | 0.09| 0.75| 0.89
30 1.00 1.00| 1.00| 1.00| 099 | 0.90 | 1.00 | 1.00

50 1.00 1.00| 1.00| 1.00| 1.00| 1.00 | 1.00| 1.00

100 1.00 1.00| 1.00| 1.00| 1.00| 1.00 | 1.00 | 1.00

200 1.00 1.00| 1.00| 100]| 1.00 | 1.00| 1.00 | 1.00

500 1.00 1.00| 1.00| 1.00| 1.00| 1.00 | 1.00| 1.00

1000 1.00 1.00] 100 100]| 1.00 | 1.00| 1.00] 1.00

96

Weibull(2,1) 10 0.79 0.08 | 0.08| 0.07| 0.02 | 0.00| 0.06 | 0.09
30 0.72 022] 018 | 014 012 | 0.00| 0.12) 0.19

50 0.80 042 034] 027 022] 0.00| 0.19] 0.34

100 0.97 0.80| 062 | 051 | 048 | 0.01 | 0.40)| 0.68

200 1.00 099 094 | 086 | 094 | 0.06 | 0.73 | 0.98

500 1.00 1.00| 1.00| 1.00| 1.00| 051] 0.99 | 1.00

1000 1.00 1.00 | 1.00| 1.00| 1.00 | 0.96 | 1.00 | 1.00

Average ALT 10 0.87 038 | 037 | 036 017 | 0.02 | 0.30| 0.39
30 0.89 0.67| 063] 0.60| 055| 0.27 | 0.55| 0.64

50 0.93 0791 074| 070 | 068 | 0.38| 0.64 | 0.77

100 0.99 094 | 088 | 085] 085 049 | 0.79 | 0.91

200 1.00 1.00| 0.99 | 0.96| 099 | 0.63 | 0.92 | 1.00

500 1.00 1.00| 1.00| 1.00| 1.00 | 0.87 | 1.00]| 1.00

1000 1.00 1.00| 1.00| 1.00| 1.00| 0.99 | 1.00 | 1.00

beta(2,1) 10 0.72 013 014] 013| 0.01] 000 | 0.11] 0.10
30 0.62 048 | 044 | 034 | 0.04 | 0.00 | 0.27 | 0.36

50 0.68 086 | 0.74| 063 | 012 | 0.01 | 045) 0.71

100 0.78 099 098 | 094 | 0.74| 0.08 | 0.82| 1.00

200 0.91 1.00 | 1.00| 1.00| 1.00 | 050 | 0.99 | 1.00

500 0.99 1.00| 100 100]| 1.00 | 1.00| 1.00 | 1.00

1000 1.00 1.00| 1.00| 1.00| 1.00| 1.00 | 1.00 | 1.00

beta(3,2) 10 0.74 0.04 | 0.04 | 0.05| 0.00| 0.00| 0.05] 0.04
30 0.59 0.10| 0.10| 0.08 | 0.00 | 0.00 | 0.07 | 0.06

50 0.54 020 019] 016 | 0.01] 000 | 0.13] 0.11

100 0.69 050 | 0.38| 0.30| 0.05| 0.00 | 0.23 | 0.33

200 0.88 0.95| 079] 0.66 | 0.64 | 0.01 | 0.50 | 0.84

500 0.99 1.00| 1.00| 0.99 | 1.00| 0.21 | 0.93 | 1.00

1000 1.00 1.00| 1.00| 1.00| 1.00 | 0.79 | 1.00| 1.00

lognormal(0,0.15) 10 0.75 0.08 | 0.07| 0.06 | 0.02 | 0.00| 0.05] 0.09
30 0.60 012 011] 011 0.07| 0.00 | 0.09| 0.14

50 0.64 019 015| 014 | 0.16 | 0.00 | 0.1 0.20

100 0.77 033 029 | 023] 031 | 0.00| 0.19 | 0.33

200 0.85 0.62 | 046 | 044 | 055] 0.01 | 0.36 | 0.60

500 0.96 096 | 086 | 083 | 094 | 0.07| 0.70 | 0.95

1000 1.00 1.00| 1.00| 0.99 | 1.00| 0.36 | 0.94 | 1.00

97

lognormal(0,0.25) 10 0.80 0.10| 010 | 0.08 | 0.04 | 0.00 | 0.07] 0.11
30 0.75 026 | 021 | 021 | 0.20 | 0.00 | 0.17 | 0.27

50 0.83 044 034] 031 033] 0.00| 0.25| 0.42

100 0.96 0.74]| 064 | 056 | 065 0.02| 045 0.72

200 0.99 0971 091]| 086| 094] 011 | 0.77 | 0.96

500 1.00 1.00| 1.00| 1.00| 1.00| 0.61] 0.99 | 1.00

1000 1.00 1.00 | 1.00| 1.00| 1.00 | 0.98 | 1.00 | 1.00

lognormal(0,0.35) 10 0.81 0.16 | 0.13| 0.14 | 0.05| 0.00 | 0.11) 0.15
30 0.86 046 | 039] 033 032] 0.01| 0.26 | 0.47

50 0.93 0.70 | 062 | 054 | 055 | 0.02 | 0.43 | 0.66

100 1.00 095]| 090 | 083 | 0.87 | 0.10 | 0.73 | 0.94

200 1.00 1.00| 1.00| 0.98 | 1.00| 0.40 | 0.95| 1.00

500 1.00 1.00| 1.00| 1.00| 1.00 | 097 | 1.00]| 1.00

1000 1.00 1.00| 1.00| 100]| 1.00 | 1.00| 1.00 | 1.00

Average AST 10 0.76 0.10| 010] 0.09 | 0.02 | 0.00 | 0.08 | 0.10
30 0.68 028 025] 021 0.13| 0.00| 0.17 | 0.26

50 0.72 048 | 041 | 036 | 023 | 0.01 | 0.27 | 042

100 0.84 0.70 | 064 | 057 | 052 | 0.04 | 0.48 | 0.66

200 0.93 091] 083| 0.79| 083 | 021 | 0.71| 0.88

500 0.99 099] 097 | 096 | 099 | 057 | 0.92 | 0.99

1000 1.00 1.00| 1.00| 1.00| 1.00 | 0.83 | 0.99 | 1.00

t(1) 10 0.83 0.61)| 061 | 0.60| 043 | 0.18 | 0.58 | 0.64
30 0.99 096 | 096 | 096 | 094 | 0.74| 0.96 | 0.97

50 1.00 1.00| 1.00| 1.00| 099 | 091 | 0.99 | 1.00

100 1.00 1.00| 1.00| 1.00| 1.00| 1.00 | 1.00 | 1.00

200 1.00 1.00| 100 100| 1.00 | 1.00| 1.00 | 1.00

500 1.00 1.00| 100| 100| 1.00 | 1.00| 1.00 | 1.00

1000 1.00 1.00| 1.00| 1.00| 1.00| 1.00 | 1.00 | 1.00

t(2) 10 0.75 029 032| 030 018 | 0.03| 0.24| 0.34
30 0.88 0.69| 067 | 0.68| 0.66 | 0.18 | 0.58 | 0.72

50 0.96 087] 085| 085|087 | 036 | 0.79 | 0.88

100 1.00 098] 098 | 099 099 | 0.72| 0.95| 0.99

200 1.00 1.00| 1.00| 1.00| 1.00| 0.97 | 1.00 | 1.00

500 1.00 1.00| 1.00| 1.00| 1.00| 1.00 | 1.00| 1.00

1000 1.00 1.00] 100 100]| 1.00 | 1.00| 1.00] 1.00

98

t(4) 10 0.72 013 014 | 0.14| 006 | 0.00 | 0.14] 0.17
30 0.66 034 031 027 032 0.02| 0.22 | 0.37

50 0.78 048 | 043 | 040 | 051] 0.04 | 0.29 | 0.52

100 0.92 0.71]| 066 | 061 | 0.76 | 0.07| 052 | 0.79

200 0.99 093 089] 086 | 093] 020 | 0.75| 0.95

500 1.00 1.00| 1.00| 1.00| 1.00| 0.66 | 0.98 | 1.00

1000 1.00 1.00 | 1.00| 1.00| 1.00 | 0.98 | 1.00| 1.00

t(7) 10 0.69 0.08| 0.09| 0.08 | 0.04 | 0.00 | 0.07) 0.10
30 0.56 016 014 | 014 | 0.17] 0.00 | 0.12] 0.20

50 0.61 022 019| 018 0.26 | 0.00 | 0.12 | 0.26

100 0.74 038 027 | 026 | 045 | 0.01 | 0.19| 042

200 0.90 058 | 048 | 040 | 0.64 | 0.01 | 0.29 | 0.63

500 0.98 090| 082 | 077] 094 | 0.04 | 0.62 | 0.92

1000 0.99 1.00| 0.98 | 0.96 | 1.00| 0.20 | 0.86 | 1.00

tukey(10) 10 0.74 055 061] 0.63| 019] 0.04| 0.63| 057
30 091 0941 098 | 099 | 054 | 052 | 0.98 | 0.96

50 0.98 1.00| 1.00| 1.00| 0.74| 0.87 | 1.00 | 1.00

100 1.00 1.00| 1.00| 1.00| 0.95| 1.00 | 1.00 | 1.00

200 1.00 1.00| 1.00| 1.00| 1.00| 1.00 | 1.00 | 1.00

500 1.00 1.00| 100 100]| 1.00 | 1.00| 1.00 | 1.00

1000 1.00 1.00| 1.00| 1.00| 1.00| 1.00 | 1.00 | 1.00

Average SLT 10 0.75 033 035] 035 0.18] 0.05| 0.33| 0.36
30 0.80 062 | 061 | 061 | 053 | 0.29 | 057 | 0.64

50 0.87 071 069] 069 | 0.67| 044 | 0.64 | 0.73

100 0.93 0.81] 0.78| 0.77 | 0.83| 056 | 0.73 | 0.84

200 0.98 0.90)| 087] 085| 091] 0.64 | 0.81 | 0.92

500 1.00 098 096 | 095| 099 | 0.74| 0.92 | 0.98

1000 1.00 1.00| 1.00| 099 | 1.00 | 0.84 | 0.97 | 1.00

beta(1.3,1.3) 10 0.82 0.05| 0.06 | 0.06 | 0.00 | 0.00 | 0.04| 0.04
30 0.84 022 018] 0.14| 0.00| 0.00 | 0.10]| 0.07

50 0.87 045| 035| 0.26 | 0.00 | 0.00 | 0.14 | 0.24

100 0.98 094 | 0.73| 057 0.21 | 0.00| 0.36 | 0.73

200 1.00 1.00 | 0.99 | 0.94 | 099 | 0.02 | 0.76 | 1.00

500 1.00 1.00| 1.00| 1.00| 1.00 | 047 | 1.00] 1.00

1000 1.00 1.00| 1.00| 1.00| 1.00| 0.99 | 1.00| 1.00

99

beta(1.5,1.5) 10 0.81 0.04| 0.05] 0.04| 0.00| 0.00| 0.05]| 0.04
30 0.74 0.16 | 0.13| 0.10 | 0.00 | 0.00 | 0.06 | 0.04

50 0.80 032 026] 019 0.00| 0.00| 0.09] 0.14

100 0.94 0.81 | 059 | 044 | 0.08 | 0.00 | 0.27 | 0.54

200 1.00 1.00| 0.95| 0.86| 0.95| 0.01 | 0.60 | 0.99

500 1.00 1.00| 1.00| 1.00| 1.00| 0.25] 0.98 | 1.00

1000 1.00 1.00 | 1.00| 1.00| 1.00 | 0.93 | 1.00 | 1.00

truncatednormal(2,2) 10 0.69 0.06 | 0.05| 0.06 | 0.01 | 0.00 | 0.05| 0.06
30 0.43 0.05| 0.05] 0.04| 0.02 | 0.00 | 0.04| 0.06

50 0.36 0.05]| 0.05| 0.05| 0.04 | 0.00 | 0.05| 0.04

100 0.35 0.06 | 0.05| 0.04 | 0.06 | 0.00 | 0.05| 0.06

200 0.28 0.05| 0.05] 0.04| 0.04 | 0.00| 0.05]| 0.04

500 0.14 0.03| 0.04| 0.06 | 0.06 | 0.00 | 0.05]| 0.05

1000 0.07 0.05| 0.04 | 0.05| 0.05| 0.00 | 0.05]| 0.05

tukey(1.5) 10 0.86 0.08| 0.09 | 0.06 | 0.00| 0.00| 0.06 | 0.06
30 0.93 046 | 036 | 0.27 | 0.00 | 0.00 | 0.16 | 0.22

50 0.98 0.85| 066 | 055 0.00 | 0.00 | 0.33| 0.60

100 1.00 1.00| 0.98| 0.90| 0.71| 0.02 | 0.68 | 0.99

200 1.00 1.00| 1.00| 100| 1.00 | 0.18 | 0.98 | 1.00

500 1.00 1.00| 1.00| 1.00| 1.00| 0.98 | 1.00 | 1.00

1000 1.00 1.00| 1.00| 1.00| 1.00| 1.00 | 1.00 | 1.00

uniform(0,1) 10 0.84 0.08 | 0.07| 0.08 | 0.00| 0.00 | 0.06 | 0.05
30 0.91 039 032| 024 0.00| 0.00| 0.5 0.17

50 0.96 0.76 | 056 | 044 | 0.00 | 0.00 | 0.26 | 0.46

100 1.00 1.00| 095| 0.85]| 057 | 0.01 | 0.57 | 0.96

200 1.00 1.00| 1.00| 1.00| 1.00| 0.13] 0.95| 1.00

500 1.00 1.00| 1.00| 1.00| 1.00| 092 | 1.00| 1.00

1000 1.00 1.00| 1.00| 1.00| 1.00| 1.00 | 1.00 | 1.00

Average SST 10 0.80 0.06 | 0.06 | 0.06 | 0.00 | 0.00 | 0.05]| 0.05
30 0.77 026 021 | 0.16| 0.00| 0.00 | 0.10] 0.11

50 0.79 049 038 | 030 0.01| 0.00| 0.17 | 0.30

100 0.85 0.76 | 0.66 | 056 | 0.33 | 0.01 | 0.39 | 0.66

200 0.86 081 080] 0.77| 0.80| 0.07| 0.67 | 0.81

500 0.83 081|081 | 081|081 052| 081 081

1000 0.81 081)081] 081 081] 0.78 | 0.81] 0.81

100

Table 25: Tests power per distribution at 10% significance level

laplace(0,10) 10 084 | 021|023 024|010 0.00| 022 031
30 082| 045 049 | 0.46| 0.39 | 0.05| 042 | 053

50 089 | 0.60| 0.63| 0.61] 056 | 0.07 | 055 | 0.70

100 096 | 087 089| 0.88] 0.79 | 0.21| 0.81 | 0.90

200 100 | 0.99] 099 | 1.00| 097 | 055 | 0.97 | 0.99

500 1.00 | 1.00| 1.00 | 1.00 | 1.00 | 0.99 | 1.00 | 1.00

1000 1.00| 1.00| 1.00| 1.00 | 1.00 | 1.00 | 1.00 | 1.00

t(10) 10 086 | 012 0.13| 0.2 0.03| 0.00| 0.12 | 0.14
30 074| 017 016| 06| 0.15| 0.00 | 0.13 | 0.22

50 074 | 024|018 017] 0.25| 0.00| 0.15 | 0.28

100 075| 028| 025| 022 0.34| 001 | 0.18 | 0.38

200 076 | 045 0.38| 0.31] 053] 0.01| 0.26 | 053

500 091| 072| 059| 0.58| 0.80 | 0.03| 0.41 | 0.80

1000 096 | 094 0.85| 0.80| 0.96 | 0.07 | 0.67 | 0.95

tukey(0.1) 10 087 | 009 011| 0.11] 0.02 | 0.00| 0.10 | 0.11
30 067 | 012 010| 0.11] 0.08 | 0.00 | 0.10 | 0.13

50 062| 010 013 | 00| 0.12 | 0.00| 0.11 | 0.14

100 060 | 014|014 011] 0.11] 0.00| 0.12 | 0.15

200 053| 045|015 0.14| 0.15| 0.00 | 0.11 | 0.18

500 042 | 020 017 | 0.6 0.25| 0.00 | 0.15| 0.25

1000 026 | 028 024| 024] 0.33] 000 019 | 031

tukey(0.2) 10 090| 0.0 0.10| 0.09| 0.01| 0.00 | 0.09 | 0.10
30 0.66| 008 0.10| 0.09| 0.02 | 0.00| 0.1 | 0.06

50 0.60| 009 010| 0.09] 0.02 | 0.00| 0.11 | 0.07

100 055| 008 010| 0.13] 0.02 | 0.00| 0.11 | 0.05

200 042 | 011 011| 0.2 0.04 | 0.00| 0.12 | 0.07

500 045| 022 018 0.17] 019 | 0.00| 0.13 | 0.13

1000 071| 044 033| 0.24| 046 | 000 | 0.19 | 0.29

tukey(5) 10 085| 0.3 06| 0.6 0.02 | 0.00| 0.17 | 0.15
30 066 | 0.16| 025| 0.27] 0.02| 001 | 0.23 | 0.18

50 057 | 025 038| 040 0.02] 001 | 032 0.21

100 057 | 059 | 0.63| 0.65]| 0.00| 0.05| 0.60 | 0.43

200 065| 096 094 092 0.00| 0.20| 0.88 | 0.89

101

500 0.83 1.00| 1.00| 1.00| 0.00| 0.85] 1.00 | 1.00

1000 0.98 1.00| 1.00| 100| 0.01 | 1.00| 1.00 | 1.00

Average CTN 10 0.86 013 015] 0.14| 0.04| 0.00 | 0.14] 0.16
30 0.71 020] 022 | 022 013 | 0.01 | 0.20 | 0.22

50 0.68 026 | 028] 027 0.19] 0.02 | 0.25]| 0.28

100 0.69 039 040 | 040 | 0.25| 0.05| 0.36 | 0.38

200 0.67 053] 051 | 050 034 | 0.15| 0.47 | 0.53

500 0.72 0.63| 059 | 058 | 045] 037 | 0.54 | 0.64

1000 0.78 0.73]| 068 | 066 | 055| 041 | 0.61| 0.71

chisquared(10) 10 0.94 0.21] 018 | 0.15] 0.05| 0.00 | 0.18 | 0.20
30 0.94 046 | 041 | 039 028 | 0.02| 031 045

50 0.96 072 062] 055| 051] 0.05| 0.46 | 0.69

100 1.00 095|090 | 084 | 086 | 012 | 0.74| 0.93

200 1.00 1.00| 0.99 | 0.98 | 1.00| 042 | 0.94 | 1.00

500 1.00 1.00| 1.00| 1.00| 1.00 | 096 | 1.00 | 1.00

1000 1.00 1.00| 1.00| 100]| 1.00 | 1.00| 1.00 | 1.00

chisquared(4) 10 0.98 035] 029| 030 | 0.09| 0.01 | 0.26 | 0.36
30 0.97 082 080] 0.71| 058 | 0.07 | 0.59 | 0.80

50 1.00 098] 094 | 090 | 084 | 019 | 0.80| 0.97

100 1.00 1.00| 1.00| 1.00| 1.00| 055 | 0.98 | 1.00

200 1.00 1.00| 1.00| 1.00| 1.00 | 096 | 1.00| 1.00

500 1.00 1.00 | 1.00 | 1.00 | 1.00| 1.00 | 1.00 | 1.00

1000 1.00 1.00| 1.00| 100]| 1.00 | 1.00| 1.00 | 1.00

lognormal(0,1) 10 0.99 0.72| 070 | 0.67 | 0.36 | 0.07 | 0.56 | 0.70
30 1.00 1.00| 099 | 0.99| 095| 059 | 0.96 | 1.00

50 1.00 1.00| 1.00| 1.00| 1.00| 090 | 1.00| 1.00

100 1.00 1.00| 100| 100| 1.00 | 1.00| 1.00 | 1.00

200 1.00 1.00| 1.00| 1.00| 1.00| 1.00 | 1.00 | 1.00

500 1.00 1.00| 1.00| 100]| 1.00 | 1.00| 1.00 | 1.00

1000 1.00 1.00| 1.00| 1.00| 1.00| 1.00 | 1.00 | 1.00

Weibull(0.5,1) 10 1.00 095 091| 090 | 052 | 0.24| 0.86| 0.93
30 1.00 1.00 | 1.00| 1.00| 1.00 | 096 | 1.00 | 1.00

50 1.00 1.00| 1.00| 100]| 1.00 | 1.00| 1.00 | 1.00

100 1.00 1.00| 1.00| 1.00| 1.00| 1.00 | 1.00| 1.00

200 1.00 1.00] 100 100]| 1.00 | 1.00| 1.00] 1.00

102

500 1.00 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

1000 1.00 1.00| 1.00| 100]| 1.00 | 1.00| 1.00 | 1.00

Weibull(2,1) 10 0.95 0.16| 0.16 | 0.14| 0.02 | 0.00 | 0.13] 0.15
30 0.90 036 | 028 | 0.26 | 016 | 0.01 | 0.23 | 0.33

50 0.92 055 044 | 038 029 | 0.02 | 0.30 | 0.53

100 0.99 088 | 0.76 | 0.65| 0.68 | 0.05| 0.53 | 0.83

200 1.00 1.00| 097 | 0.90| 097 | 0.18 | 0.81 | 1.00

500 1.00 1.00| 1.00| 1.00| 1.00| 0.75] 0.99 | 1.00

1000 1.00 1.00| 1.00 | 1.00 | 1.00| 1.00 | 1..00 | 1.00

Average ALT 10 0.97 048 | 045| 043 | 0.21 | 0.06 | 0.40 | 047
30 0.96 0.73] 070 | 067 | 059 | 0.33| 0.62 | 0.72

50 0.98 085|080] 0.77| 073]| 043 | 0.71] 0.84

100 1.00 097 093 | 090 | 091 | 054 | 085 0.95

200 1.00 1.00| 099 | 098] 099 | 0.71 | 0.95| 1.00

500 1.00 1.00| 1.00| 1.00| 1.00 | 094 | 1.00] 1.00

1000 1.00 1.00| 1.00| 100]| 1.00 | 1.00| 1.00 | 1.00

beta(2,1) 10 0.89 023] 024 | 022 0.02| 0.00| 0.15] 0.20
30 0.84 0.68 | 061] 050 | 0.08| 0.02 | 0.40| 0.55

50 0.87 094 | 083 | 0.74| 026 | 0.05| 0.61 | 0.83

100 0.93 1.00| 1.00| 0.97] 095| 0.25] 091 | 1.00

200 0.97 1.00| 1.00| 100| 100 | 0.73 | 1.00| 1.00

500 1.00 1.00 | 1.00 | 1.00 | 1.00| 1.00 | 1.00 | 1.00

1000 1.00 1.00| 1.00| 100]| 1.00 | 1.00| 1.00 | 1.00

beta(3,2) 10 0.88 011 010] 0.10| 0.00 | 0.00 | 0.09| 0.10
30 0.78 019 020| 0.17 | 0.02 | 0.00 | 0.14 | 0.14

50 0.74 036 | 026 | 0.23| 0.02| 0.00| 0.19] 0.20

100 0.85 071 | 058 | 046 | 021 | 0.01 | 0.40 | 0.54

200 0.92 099 090 | 0.78 | 0.88| 0.05| 0.65| 0.95

500 1.00 1.00| 1.00| 1.00| 1.00| 0.40 | 0.98 | 1.00

1000 1.00 1.00| 1.00| 1.00| 1.00 | 0.94 | 1.00| 1.00

lognormal(0,0.15) 10 0.92 0.14] 014 | 011 0.03| 0.00| 0.2 0.14
30 0.81 0.18] 018 | 0.17 | 0.14 | 0.00 | 0.15| 0.20

50 0.79 026 | 023] 022 022] 001 | 0.21| 0.26

100 0.86 047] 036| 034 037 | 0.01| 0.28| 045

200 0.93 0.71| 060] 057 | 0.67 | 0.04| 0.50]| 0.70

103

500 0.98 098] 092 | 090 097 | 0.20 | 0.82 | 0.97

1000 1.00 1.00| 1.00| 0.99 | 1.00| 0.57 | 0.98 | 1.00

lognormal(0,0.25) 10 0.92 018 018] 0.17| 0.05| 0.00 | 0.13] 0.16
30 0.86 039] 032| 029 026 | 0.01 | 0.26 | 0.36

50 0.90 053 049] 044 | 041] 0.03| 0.36 | 0.50

100 0.99 083 | 0.73] 0.68 | 0.75| 0.06 | 0.59 | 0.80

200 1.00 098 | 095| 092 | 098 | 0.24| 0.84 | 0.97

500 1.00 1.00| 1.00| 1.00| 1.00| 0.79 | 1.00 | 1.00

1000 1.00 1.00| 1.00 | 1.00 | 1.00| 1.00 | 1..00 | 1.00

lognormal(0,0.35) 10 0.96 021 025| 0.20 | 0.06 | 0.00 | 0.17 | 0.22
30 0.94 0.58 | 052 | 048 | 0.39 | 0.03| 0.41) 0.58

50 0.98 0.78| 071] 0.65| 0.66 | 0.07 | 0.52| 0.76

100 1.00 0971094 | 091| 093 | 021 | 0.82| 0.96

200 1.00 1.00| 1.00| 1.00| 1.00| 0.60 | 0.98 | 1.00

500 1.00 1.00| 1.00| 1.00| 1.00| 1.00 | 1.00 | 1.00

1000 1.00 1.00| 1.00| 100]| 1.00 | 1.00| 1.00 | 1.00

Average AST 10 0.91 0.17] 018 | 0.16| 0.03| 0.00 | 0.13| 0.16
30 0.85 040 037] 032 0.18] 0.01 | 0.27 | 0.37

50 0.86 0.57 | 050 | 046 | 031 | 0.03| 038 051

100 0.93 080 0.72] 0.67| 0.64| 0.11 | 0.60 | 0.75

200 0.96 094|089 | 085|091 033| 0.79 | 0.92

500 1.00 1.00| 098 | 0.98| 099 | 0.68 | 0.96 | 0.99

1000 1.00 1.00| 1.00| 1.00| 1.00| 0.90 | 1.00 | 1.00

t(1) 10 0.93 0.64 | 067 | 0.66 | 046 | 0.26 | 0.66 | 0.66
30 0.99 097|098 | 098 | 095| 0.79 | 0.96 | 0.98

50 1.00 1.00| 1.00| 1.00| 1.00| 0.97 | 1.00 | 1.00

100 1.00 1.00| 100| 100| 1.00 | 1.00| 1.00 | 1.00

200 1.00 1.00| 1.00| 1.00| 1.00| 1.00 | 1.00 | 1.00

500 1.00 1.00| 1.00| 100]| 1.00 | 1.00| 1.00 | 1.00

1000 1.00 1.00| 1.00| 1.00| 1.00| 1.00 | 1..00 | 1.00

t(2) 10 0.88 034 036| 034 022 | 0.04| 033) 041
30 0.93 0.74] 075| 072 | 070 | 0.28 | 0.68 | 0.78

50 0.99 089 09| 089 | 090 | 051 | 0.83] 0.91

100 1.00 099 099 | 099 099 | 0.79 | 0.98 | 0.99

200 1.00 1.00| 1.00| 1.00| 1.00| 0.98 | 1.00| 1.00

104

500 100 1.00| 1.00| 1.00 | 1.00 | 1.00 | 1.00 | 1.00

1000 1.00| 1.00| 1.00| 1.00 | 1.00 | 1.00 | 1.00 | 1.00

t(4) 10 087 | 020 022 019 0.08| 0.00| 0.20 | 0.25
30 084 | 040 039 0.35]| 0.37 | 0.03| 0.31| 0.46

50 087 | 057|052 047 | 057 | 007 | 042 | 063

100 096 | 076 075| 072 | 0.82 | 0.13| 0.63 | 0.83

200 099 | 094 093 0.90| 0.96| 0.33| 0.86 | 0.96

500 100 1.00| 1.00| 1.00 | 1.00 | 0.84 | 0.99 | 1.00

1000 100 1.00| 1.00| 1.00 | 1.00 | 1.00 | 1.00 | 1.00

t(7) 10 088 | 014 013 0.13] 0.05| 0.00| 0.13 | 0.18
30 078 | 024| 022| 020 021] 001| 0.17 | 0.30

50 077 | 032 026 022] 029| 001| 020 0.39

100 085| 043|041 0.34| 050 | 0.02 | 0.28 | 0.54

200 090 | 068 059 054 | 0.73| 0.03| 043 | 0.72

500 099 | 093] 090 083|096 | 0.12| 0.75 | 0.95

1000 1.00 | 1.00| 099 | 098 | 1.00 | 0.37 | 0.95| 1.00

tukey(10) 10 089 | 061| 075| 073|024 012 | 0.75| 0.70
30 096 | 096 099 0099 | 0.61| 0.72| 0.98 | 0.98

50 099 | 1.00| 1.00| 1.00 | 0.84 | 0.96 | 1.00 | 1.00

100 100 1.00| 1.00| 1.00 | 097 | 1.00 | 1.00 | 1.00

200 1.00| 1.00| 1.00| 1.00 | 1.00 | 1.00 | 1.00 | 1.00

500 1.00| 1.00| 1.00| 1.00 | 1.00 | 1.00 | 1.00 | 1.00

1000 1.00| 1.00| 1.00| 1.00 | 1.00 | 1.00 | 1.00 | 1.00

Average SLT 10 089 | 039 043 041 0.21| 0.08| 041 | 0.44
30 090 | 066 067 0.65| 057 | 0.37 | 0.62 | 0.70

50 092| 076|074 072] 0.72| 050 | 0.69 | 0.79

100 096 | 084 083 0.81| 0.86| 059 | 0.78 | 0.87

200 098 | 092 090 0.89| 0.94| 0.67| 0.86 | 0.94

500 100 099| 098 | 097 | 099 | 079 | 0.95| 0.99

1000 100 1.00| 1.00| 1.00 | 1.00 | 087 | 0.99 | 1.00

beta(1.3,1.3) 10 094 | 014| 012| 013 001| 0.00| 0.11 | 0.07
30 093| 036 033 0.24] 0.00| 0.00| 0.18 | 0.21

50 093 | 066 050 0.37] 0.00| 0.01| 0.30| 037

100 098 | 098] 086 | 072 064 | 0.02| 055 0.88

200 100 1.00| 1.00| 098 | 1.00 | 0.12 | 0.87 | 1.00

105

500 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.79 | 1.00 | 1.00
1000 1.00| 1.00| 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

beta(1.5,1.5) 10 094| 011 011| 0.0/ 0.01 | 0.00 | 0.09 | 0.08
30 089| 030]023| 021 000]| 000| 017 0.14

50 088 050 0.38| 0.33] 0.00| 0.00| 0.22| 0.28

100 097 | 089 0.74| 0.60| 0.42 | 0.01| 040 | 0.75

200 1.00| 1.00| 098 | 093] 0.99 | 0.05| 0.78 | 1.00

500 1.00| 1.00| 1.00 | 1.00| 1.00 | 0.56 | 1.00 | 1.00

1000 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 1.00 | 1.00

truncatednormal(2,2) 10 0.88| 011] 009| 010/ 0.01| 0.00| 0.08]| 0.11
30 068| 011]010| 012 0.05| 0.00| 0.10] 0.11

50 060 011 0.09| 0.09| 0.06 | 0.00| 0.0 | 0.10

100 055| 011 011| 012 0.07 | 000 | 011 | 0.10

200 040 | 011 010| 0.1 0.08 | 0.00| 0.10 | 0.09

500 022| 009 007| 009 | 0.08| 0.00| 0.09]| 0.09

1000 009 | 008 009| 010| 0.1 | 0.00| 011 | 0.12

tukey(1.5) 10 095| 021]017| 018 0.00| 0.00| 0.13]| 0.12
30 098 | 069 | 053| 046 0.00| 0.00| 0.32| 0.43

50 1.00| 093] 0.80| 068 0.05| 0.01| 0.48 | 0.78

100 1.00| 1.00| 099 | 0096 | 0.96 | 0.07 | 0.82 | 1.00

200 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.45 | 0.99 | 1.00

500 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

1000 100 | 1.00| 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

uniform(0,1) 10 095| 017 0.16| 0.4 0.00| 0.00| 012 | 0.12
30 096| 059 | 048 | 036 | 0.00| 0.00| 027 032

50 098 | 088 072| 061] 0.04| 001 | 041 | 0.68

100 1.00| 1.00| 098 | 091 | 091 | 0.04| 0.75| 0.99

200 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.30 | 0.98 | 1.00

500 1.00| 1.00| 1.00 | 1.00 | 1.00 | 0.99 | 1.00 | 1.00

1000 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

Average SST 10 093| 015|013 | 013 0.01| 0.00| 0.11]| 0.10
30 089 | 041]033| 028 001] 000| 021 024

50 088 | 062| 050| 042 0.03| 001 | 0.30 | 0.44

100 090| 080| 074| 066 | 060| 003| 053] 074

200 088 | 082| 082| 080| 0.81| 0.18| 0.74 | 0.82

106

Family = Distribution Size | new_test SW AD CVM 1B KS Lillie SF
500 0.84 082 081 | 0.82] 0.82| 0.67 | 0.82| 0.82

1000 0.82 082] 0.82| 0.82| 0.82 | 0.80 | 0.82 | 0.82

107

	Blank Page

